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How to use this book

Structure of the book

This book coversallthematerialfor Topic 8 (Sets, Relations and Groups Option) of theHigher
Level Mathematics syllabus for the International Baccalaureate course.It is

largely independent of

the Core material, although someexamplesusevectorsand complex numbers; the only real

prerequisite is familiarity with functions (syllabus topic 2.1),thoughyou
will also find it beneficial to

coverproofby
induction (syllabus topic 1.4) and sets and Venn diagrams (syllabus topics 5.2 and

5.3). We have tried to include in the main text
only

the material that will be examinable. Thereare
many interesting applications and ideas that go beyond the

syllabus
and we have tried to highlight

\342\200\242 some of these in the 'From another perspective'and 'Research explorer' boxes.

The material is roughlysplit into threeblocks(sets and operations; functions and relations;

groups), and thosearecontained in chapters 2 to 4. Chapter 1 introducessomemethods of

mathematical proof that are used throughout thecourse.Chapter 5 contains a summary of all
the topicsand further examination practice, with many of the questionsmixingseveraltopics- a

favourite trick in IB examinations.

Each chapter starts with a list of learning objectives to
give you an idea about what the chapter

contains.Thereis an introductory problem at the start of the topicthat illustrates what you should

be able to do after you have completed the topic. At the start, you should not expect to be ableto
solvetheproblem,but you may want to think about possiblestrategiesand what sort of new facts

and methods wouldhelpyou.
The solution to the introductory problem is provided at the end of

chapter 5.

Key point boxes

The most important ideas and formulae are emphasisedin the 'KEY POINT' boxes. When the

formulae are given in the Formulabooklet,there will be an icon: ; if this icon is notpresent,then

the formulae are not in the Formula booklet and
you may need to learn them or at least know how

to derive them.

Worked examples
Eachworkedexampleissplitinto two columns. On the right is what you shouldwrite down.

Sometimes the example might include more detail then
you strictly need, but it is designed to

give

you an idea of what is required to scorefull method marks in examinations. However, mathematics
is about muchmorethan examinations and remembering methods. So, on the left of the worked

examples are notes that describe the thought processes and suggest which route
you

should use to

tackle the question. We hope that these will help you with any exercisequestionsthat differ from

the worked examples. It is very deliberatethat some of the questions require you to do morethan

repeat the methods in the worked examples.Mathematicsis about thinking!

>ivA How to use this book
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Signposts

There are severalboxesthat appear throughout the book.

Theory of knowledge issues

Every
lesson is a Theory of knowledge lesson,but sometimesthe links may not

be obvious. Mathematics is frequentlyusedas an example of certainty and truth,

but this is often not the case. In these boxes we will try to highlight some of the
weaknessesand ambiguitiesin mathematics as well as showing how mathematics
links to otherareasof

knowledge.

From another perspective

The International Baccalaureate\302\256 encourages looking at things in different ways.
As wellas highlightingsomeinternational differences between mathematicians

these boxes also look at other perspectives on the mathematics we are covering:
historical,pragmatic

and cultural.

Research explorer

As part of your course,you
will be asked to write a report on a mathematical

topicof
your

choice. It is sometimes difficult to knowwhich topicsaresuitable as

a basis for such reports, and sowe have tried to show where a topic canactas a

jumping-off point for further work. This can also
give you ideas for an Extended

essay.Thereis a lotofgreatmathematicsout there!

Exam hint

Although we would encourageyou
to think of mathematics as more than just

learningin order to pass an examination, there are somecommonerrors it is

useful for you to be awareof. If thereisa commonpitfall we will try to highlight
it in these boxes.We also point out where graphical calculators can beused
effectively

to simplify a question or speed up your
work.

Fast forward / rewind

'* /

^

)
1>

Mathematics is all about making links. You might be interestedto seehow something you

have just learned will be used elsewherein the course, or you may need to go backand

remind yourself of a previous topic. Theseboxesindicateconnectionswith other sections of the

book to help you
find your way around.

How to use the questions
The colour-coding
The questions are colour-coded to distinguish between the levels.

Blackquestions are drill questions. They help you practise themethodsdescribed in the book, but

they are usuallynot structuredlikethe questions in the examination. This does not mean
they

are

easy, some of them are quite tough.

y

* >

I

M
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How to use this book

- c\302\273
r*i>r

Kn
+ 0(.

&



(*

Each
differently

numbered drill question tests a different skill.Letteredsubparts of a question are

of increasing difficulty.
Within each lettered part there may be multipleroman-numeralparts

((i), (ii),...), all of which are of a similar
difficulty.

Unless you want to do lots of practicewewould
recommendthat you only do one roman-numeral part and thencheck

your
answer. If you have

made a mistakethen
you may want to think about what wentwrongbefore

you try any more.

Otherwise move on to the nextletteredpart.

Green questions are examination-style questions which shouldbeaccessibleto students on

the path to getting a grade 3 or4.

Blue questions are harder examination-style questions. If you are aimingfor a grade 5 or 6 you
^ ^V shouldbeableto make

significant progress through most of these.

)

I

D

Red questions are at the very top end of
difficulty

in the examinations. If you can do these
then you are likely to be on coursefor a grade7.

Goldquestions are a type that are not set in theexamination,but are designed to provoke

thinking and discussionin orderto helpyou
to a better understanding of a particular

concept.

We hope you find the Sets, Relations and GroupsOptionan interesting and enriching course. You

might also find it quite challenging, but do not get intimidated,frequently topics only make sense

after lots of revisionand practice.Persevereand you will succeed.

The author team.

vi How to use this book
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At the end of each chapter you will see longerquestions typical of the second section of
International Baccalaureate\302\256 examinations. These follow the same colour-coding scheme. \\)

Of course, these are just guidelines. If you are
aiming

for a grade 6, do not be surprisedif you
find

a green question you cannot do. Peoplearenever equally good at all areas of the
syllabus. Equally,

if you can do all the red questions that does not guarantee you will get a grade 7;after all, in the

examination you have to deal with time pressure and examination stress!

These questionsaregradedrelative to our experience of the final examination,sowhen you first

start the course you will find all the questionsrelatively hard, but by the end of the course
they

should seem more straightforward. Do not get intimidated!
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Introduction

In this Option yo will earn:

about sets and notation for their description, size, exclusionsand subsets
about

operations
on sets and the qualities of closure, associativity,commutativity

and

distributivity for operations

the concept of identity and inverseelementsfor a given operation

set operations of union, intersection,set difference and symmetric difference, and the

interactions between them

the Cartesian
product

of two sets and how to interpret ordered pairs
aboutrelations as subsets of Cartesian products, the concepts of domain and range for

a relation and the qualities of
reflexivity, symmetry and transitivity for relations

equivalence relations, equivalenceclassesand the specific example of numerical

congruence modulo nas an equivalencerelation on integers

about functions as restricted examples of relations,the conceptsofdomain,rangeand
codomainfor a function and the qualities of

injectivity, surjectivity and bijectivity for

functions

composition of functions, the inverseof a
bijective

function and how to determine these

the four axioms of a group and the additional requirementfor an Abeliangroup
about

cyclic groups and their generator elements

Lagrange's Theorem and its corollaries which show how the order of a group can be
usedto

provide
information on the orders of elements and subgroups

about the structures of small groups; specifically cyclic groups, the Klein 4-group and

the dihedral group D3

examples of groups: Functions, symmetries of plane figures and permutations

about homomorphismsas functions between groups of identical structure which

preserve operations; isomorphismsas
bijective homomorphisms.

y

Introductory problem

An automated shuffling machine splits a deck of n cardsin half; if n is odd it leaves the extra card in

the lower half. It then inverts the lower half and exactly interleaves the two, so that an ordered deck

of cards labelled 1,2,3,...,n would, after one shuffle, be in the ordern, 1,(n
- 1), 2, (n - 2),3,...

The machine is used on a deck of seven cards.

After how many shuffles would the deck have returned to its original order?

Would it be possible to use the machine to exactly reversea deckofn cards? If so, for what

values of ri?

Introduction
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In
your mathematical studies so far you have learnedto take a great many arithmetic rules for granted.

Many of these may not have been justified in a meaningful way other than 'this is just how it works'.

Why, for example, is it logical that 0! = 1?

Why is it that when adding or multiplying numbers, the order of values is irrelevant (so that

a+b-b+a and axb-bxd) while for division and subtraction, reversal of order fundamentally

alters the result? You also know that in vector multiplication, order does not affect the result of a scalar

product, but doesimpactupon the vectorproduct. / j-f

Is there some classification that separates those operationswhich are or are not affected in this way?
In group theory, we consider mathematical operations in a more abstractway and establish rules

and connections between different types of operation. In doing so, it is possible to find links between
different types of problem and to transfer conclusionsfrom one branch of mathematics to another.

W

iN2 Introduction
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Preliminaries:

Proof by

contradiction

Throughout
the course you will have encountered derivations

of new results:Double-angledidentities, the derivative of x2

and the quadratic formulaaresomeexamples. Most of these

were direct proofs, which meansthat we started from some

results we alreadyknew and derivednew results
by

direct

calculation. However, there are some mathematicalresultsthat

cannot be proved in this way. One of themostquoted examples

is the proof that v2 is an irrational number:sinceits decimal

expansion is infinite, we cannot show that it never repeats!

An alternative approach is to
try

and show that v2 cannot be
written as a fraction;but how can you show by direct calculation
that something cannot be done? In this situationweneedto
use an indirect proof, where we find some roundabout

way

of showing that the statement must be true.Forexample, we

could try to see what wouldhappenif v 2 could be written as a
fraction and hopethat this leads to an impossible conclusion;
this is calledproofby contradiction.

You should have already met one exampleofindirectproof,
proofby induction, which is used to show that a given

statement is true for all integers above a certain starting value.

This involves showingthat the statement is true for the starting
number,and that having proved it for some number we can
alsoprove it for the next one; we can thenconcludethat the

statement can be proved for all integers,evenifwe have only

directly proved it for the first one.

Hereis anotherexample.Suppose that we have an odd square
number n2 and we want to prove that n must alsobe an odd

number. It is not really obvioushowto start. We could try taking
the square root of n2, but we don't know whether this produces
an oddnumber (remember, this is what we are trying to prove!).
However, thinking about what would happen if n wasnotan odd
number allows us to do some calculations: If n wasnot oddit
would be even, and the product of two even numbersis alsoeven,

so n2 would be even. But we weretold that n2 was odd, so this
situation is impossible!We can therefore conclude that n must be
odd. This way of reasoning is summarised below.

In this chapter you
will learn:

\342\200\242about different types
of proof used in

mathematics

\342\200\242how and when to use

proof by contradiction.

Cana mathematical

statement be true before it

has been proved?

^
Proof by contradiction is

y a special case of a more

general form of argument,
called reductiood

obsurdum, in which a proposition
is disproved by showing that its

truth would lead to an impossible
conclusion.This type of argument
relies on the low of excluded
middle,which states that either

a proposition or its negation must

be true.

v>

w*
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Proof by contradiction Mf
was already used by Jf\342\200\236T^

Euclid around 300 BCE.
*

One of the most famous

examples was his proof that there

are infinitely many prime
numbers. Although it has been a

widely used tool in mathematics

since then, its validity has been

disputed by some, most notably
by the 20th Century Dutch

mathematician and philosopher
L.EJ.Brouwer.

KEY POINT 1.1

Proof by contradiction

You can prove that a statement is true by showingthat if

the opposite were true, it would contradict some of your
assumptions (orsomethingelse

you already know to be true).

We shall now useproofby
contradiction to show that v2 is an

irrational number.Rememberthat the definition of an irrational

Pnumber is that it cannot be written in the form \342\200\224,where p and

q are integers. It is difficult (if not impossible) to express the fact

that a number is not of a certain form using an equation. Here,

proof by contradiction is a
really

useful tool: start by assuming

that v2 is ofthe form \342\200\224.

1

orked example 1.1

Prove that v2 cannot be written in the form \342\200\224,where p,qeZ.
1

Try proof by contradiction:
Start by writing v2 as a fraction

and show that this leads to

impossible consequences

The same fraction can be written in

several ways e.g.\342\200\224
= \342\200\224= \342\200\224so

we should specify which one we
are using

We can now do some calculations'

Looking for common factors*

is useful in solving problems

involving integers

We have reached a contradiction,
\342\200\242

as we assumed that p and q had
no commonfactors

Suppose that v2 = \342\200\224
with p,q e Z,

and that the fraction is in its simplest form so
that

p
and q have no common factors.

Then \342\200\224= 2 (squaring both sides), so
pz

= 2qz.

This means that pz is even, so p must also be

even:p-2r.
Then

{2rf=2<f

=> 4r2 = 2of
=>2r2 =

of

so cf- is even and therefore
c\\

is also even.

Hence p and
c\\

have common factor 2, which is a

contradiction.

So 42- cannot be written as \342\200\224.

<1-

1h

v>

w*

)
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We shall use proof by contradiction to proveseveralresultsin this

option. The exercise below is intended to
give you some practice

in writing up this
type

of proof, but does not represent typical
examinationquestions.

Oneof the most fascinating
*SEIi? examples of proof by

contradictionis Cantor's

diagonal proof, which shows that

it is impossible to put all real

numbers into an (infinite) list.

Exercise 1A

1. Prove that if n2 is an even integer then n is alsoan even integer.

2. Show that there are no positiveintegersx and y such that

X2 \342\200\224
y2 =1.

3. Prove that log2 5 is an irrationalnumber.

4. Prove that there is no largest even integer.

5. The mean age of five students is 18.Showthat at least one of

them must be at least 18 years old.

6. Show that the sum of a rational and an irrational numberis
irrational.

v>

wr

7. Prove the converse of Pythagoras'theorem:If a,b,c are the

sides of a triangle and a2 + b2 - c2, then 6 = 90\302\260.

8. (a) Use your calculator to show that the equation x3 + x +1 = 0
has onerealroot,and find this root correct to 3 significant
figures.

(b) Prove that this root is irrational.

)

y

V

O
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In this chapter you
will learn:

\342\200\242what defines a set

\342\200\242about operations and

their properties

\342\200\242to use Cayley tables

for results of operations
\342\200\242to use rules for

operations on sets

\342\200\242about set algebra

\342\200\242about the interaction

of set union and
intersection:De
Morgan'slaws.

Sets and

operations

Since you should have already done some work on setsand

Venn diagrams as part of the core
syllabus,

much of the material

in this chapter will be familiar.However,you
will see that here

we take a slightlydifferent approach as we develop notions of
the abstract structureand rules governing sets; the notation is
the same,but the use is often more precise.

We shall use this first chapter of the optionto familiarise
ourselves both with this more structured approach and with the

style of proof and working whichwe shall
employ.

You will need

a clear understanding of the principleofproofby contradiction,

which was explained in chapter 1. You may also wish to revise

the method ofproofby
induction that you learned as part of the

core
syllabus.

<i-

v>

wr

+\302\253c

Defining sets

You should already be familiar with sets and set notation. We

shall revisethembelow, before we apply more formal logic in
this option.
A set is a well-defined collection of items;itemsin a set are

referred to as the elements(alsosometimescalled members)

of the set.

The general notation to describea set
by listing its elements is

to use braces{}and comma separation. Order is not relevant

(though it is usefulto list elementsin a standard order) and

each different elementis listed
only

once.

For example, we could define the setsA, B and C by:

A = {1,2,3,4,5}

\302\243=
{1,3,5,2,4}

C = {5,4,3,2,1}

Since all contain thesameelements, they are equal, each being
the set of integersbetween 1 and 5 inclusive. The order given for

A is, of course, the one usuallyused.

)

y

W
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The symbol e indicatesmembershipofa particular set, while

g indicates that an item is not an element of a set. For example:

1g {1,2,3,4,5}
6* {1,2,3,4,5}

Rather than listing all elements exhaustively, we can alsodefine

a set by description:

\342\200\242{colours in the US flag} would indicatetheset
consisting

of

the colours red, white and blue

\342\200\242{factors of 6} is the set containingthe values 1, 2, 3 and 6.

Alternatively,
we can define a set by referring to a predefinedset

and then imposingrestrictions.The restrictions are listed after a

colon or vertical bar, using a structure called 'set buildernotation.

Usingthe setA = {1,2,3,4,5}, {x e A: x isnot a factor of 6} means

'the set of all elements x in A such that x isnot a factor of 6', that

is {4,5}.

{xe A
| x2 e A} means 'the set of elementsxofA such that x2 is an

element ofA', that is {1,2}.

You may see either a colonor a vertical bar used in the IB exam

questionsand in othertexts,but in this option a vertical bar will

always be used (for consistency).

Exclusions from a set can alsobelisted,using
the slash symbol:

A\\{1,3}

means callelements of set A, excluding values 1 and 3', that is

{2,4,5}.

Enumerating a set
A set with a finite number of elementsis termeda 'finite set'.

The number of elements of a set A is denoted n(A) or | A |, and
referredto as thepower,sizeor cardinality of set A. A set with
an infinite number of elements is termed an 'infinite set'.

Standard number sets
You should already be familiar with several standard number
sets,allofwhich are infinite:

N represents the set of all Natural
numbers

Z representsthe set of all

Integers

Q represents the setofall
Rational numbers

R represents the set of all Real
numbers

C representsthe set of all

Complex numbers

N = {0,1,2,3,...}

Z =
{0,\302\2611,\302\2612,\302\2613,...}

Q
= U\\peZ,qeZ\\{0}\\

C = {x+ iy\\x,yeR}

- c\302\273
r*i>r
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The definition of a

universal set given here is

that used in the IB; in

advanced set theory,
universal set has a different

meaning, and is used to refer to
the 'set containing all sets'

(including itself). This concept
gives rise to 'Russell's paradox', a

source of great dissent in the early

years of set theory.

-^ 4

Sometextswill define N without the element zero, but the
definitiongivenaboveis that adopted by the IB.

The set of real numberscannot
easily

be written as a list or
structure, but can be considered as the set of all values that can

be expressed as either terminating or non-terminatingdecimals.

The Venn diagram below illustrates that each of the five

number sets lies entirely within the set(s) belowit in the table.

We use a superscript+ to indicate the positivevalueswithin a set

(so that Z+ = {xe Z |x>0}).You may see in other texts *
or

x

used to indicate a number setlackingzero(sothat Z \\ {0} could

be alternatively written as Z* or Zx ), but we shall not use this

notation.

Rememberthat we use square brackets to indicate intervals on
therealline,sothat {x e R | a < x <

b} can be written as [a,b]
and{xeU \\ a<x<b} is ]a,b[.

Universal and empty sets

In
any given problem involving sets, there will be a limit

on which elementsare
being considered; the set of all these

elementsis calledthe universal set, denoted as U. The universal
set

may
be explicitly defined or may be implicitfrom context;

for example, if a question relates to the factorsof integers,it will

be clear that U = Z+ (or somepart of Z+).Oncethe universal set

is defined, no elements outside the universal set are considered

when listing elements of a set. Forexample,ifwe define

U = {xeZ\\0<x<10} then the set E of all evennumberswill be

E = {0, 2, 4, 6, 8}.It isnotnecessaryto repeat that we are only
interested in integers between0 and 9 inclusive.

In a Venn diagram, the universal set is indicated by a rectangle
which contains any other sets.

* >.

<i-
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A set containing no elements at all is termed the
'empty set', and

is given by the symbol 0:

Complementarysets
Once the universal set is established, every set A has a

complement set A' within U, containingallvaluesin Uwhich
arenotpresentin A.

A' = U\\A

Necessarily, all elementsof [/lie
exclusively

either in A or in A',
but never in both.

A' is also sometimes

termed the absolute

complement to

distinguish
it from the

]^> concept of 'relative
]^>

complement] which

we shall meet in

Section 2C of this

Option.

<i-

v>

w*

+flc

Subsets

If all the elementsof a setA are also elements of a set B, thenA

is termed a subset of B and B is a supersetofA, written AcB

and BdA, respectively.

If A \302\243B and there are elements of Bwhich arenotpresentin
A, then A is a proper subsetofB,written AczB.

AczB

Thus:

{1,2,3} c {1,2,3,4,5}

{1,2,3}\302\243{1,2,3,4,5}

{1,2,3} \302\243{1,2,3}

But:

{1,2,3} <Z {1,2,3}

{l,2,3}\302\243f {1,3,5}

Clearly for any two sets A and B, if each is a subsetof the other
then neither contains any element missing from the other,and

hence they must be equal.

- c\302\273
r*i>r

Kn
+ 0(.
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KEY POINT 2.1

H

\\f asked to find

a subset in an

examination

question, you should

give a propersobset,
and not the empty

set!

AcB and BcA if and
only

if A = B

This fact is
frequently

used to prove equality of sets. By
establishingthat any element of B must be an elementofA so

that BcA, and also that any element of A must be an element
ofB so that AcB,we can demonstrate that A and B are equal.
The empty set is technically a subset of every set. For

any
set

C, 0 fulfils the rule 'everyelementof 0 is an element in C

Similarly, set Cis alsoconsidereda subset of itself.

Both 0 and C itselfaretermed'trivial subsets' of C.

So far, we have consideredexamplesofsetswhose elements are

colours and numbers. It is important to realisethat the elements

of a set can be
any type of object. Importantly, and very usefully,

we canconsidersetswhose elements are also sets.

orked example 2.1

Thesetofallpossiblesubsets of a set A is called the powersetofA, denoted V(A).

Set A = {1,2,3}.ListtheelementsofV(A).

List the elements systematically*

by size. Don't forget the two

trivial subsets

V(A) = {0>{1}>{2}>{3},{1>2}>{1>3}>{2>3}>{1>2>3}}

Notice that in Worked example 2.1, we see the empty set 0 shown as an element

of V(A). Is it a useful concept to talk about sets containing empty sets?

1h

v>

wr

Exercise 2A

1. List the elementsofthesets:

(a) (i) {a,b,c,d}

(ii) {2,4,6,8}

(b) (i) {vowelsin the
English alphabet}

(ii) {single digit prime numbers}

(c) (i) {xeN|x<5}
(ii) {x

g R | x2 =
4}

y
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(d) (i) {xeZ|3x<x2<20}
(ii) {zeC\\z5=

z}

(e) (i) |2n +
l|\302\253eN,n<4}

(ii) {3x|xeZ,|x|<3}

2. State the cardinalityof the following sets:

(a) (i) {a,b,c,d}

(ii) {3,2}
(b) (i) 0

(ii) {0}

(c) (i) {pitchesin a chromaticscale}

(ii) {USstates}

(d) (i) {xeN|x<7}

(ii) {x<=Z\\x<7}
(e) (i) {xeZ+|lcm(x,6)<20}

(ii) {xeZ\\ x2-8<|x|}

<1-

1h

v>

W*

+^c

For each of the followingsets,stateif it is a proper subset of:

(i) N (ii) Z (iii) Q (iv) R

(a) {1,2,3.5}

(b) {x:x2>-l}
(c) {x+l|xeN}

1
(d)

x
\\xeZ\\{0}

For each of the following,statewhetherAcB.AdB or
A = B. If one is a proper subsetofthe other, give an example
of an elementpresentin the superset and absent from the
subset.

(a) A = N,E = Z

(b) A =
{x2\\xeN},B

= {x2\\xeZ}

(c) A = R+,B = {qr \\qeQ\\reQ}

(d) A = 0,B = {0}

Y

5. Using the definitiongivenin Worked example 2.1, for each

of the following setsA, write down the power set V(A):

(a) A =
{0,1}

(b) A = {a,b,c,d]

6. Usingthe definition given in Worked example 2.1, prove that

for any finite set A for which n(A) -
k, n{V(A)^

- 2k.

2 Setsand operations 11
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\302\261J Operations

A binary operation on a set is a well-definedrule for

combining two elements of the set to produce a uniqueresult,
which may or may not also be an elementof theset.

You already know some operations from basic arithmetic,
suchasaddition,subtraction,multiplication, division and

exponentiation. We use the symbols+, -, x, -5- and A
respectively

to indicate each of these operations.When applying an

* operation to two elements x and y of our number set, we write
the operationsymbol

between its two input values (called
operands or

arguments):)

I x + y

fcj\\l^ Topic8 -
Option: Sets, Relations and Groups

) *v n* ^ Q._ i.*,,
+ 0|..

*>-

x-y

xxy

xAy ^
U

So far this is familiar, although we are more accustomed to

seeing xA y written as xy. 1 K

When considering operations in the abstract, we shallgenerally
usenon-specificsymbols

such as * and U to represent an

operation, and define the rulesoftheoperationseparately.

Where an operation is closely related to one of the standard

arithmetic operations, we frequently denote the operation by

circling the arithmetic symbol: for example \302\251and \302\256.

You know some operations which use onlyoneelement
(unary

operations, such as 'factorial'). There are alsooperationstaking

three or more elements; study of these doesnotcomewithin

the syllabus for this option, though you shouldconsiderhow

the rules and considerations given below might beadaptedfor

unary or ternary (three element) operations. *\302\260

For simplicity we shall from now on refer
only

to 'operations'

rather than 'binary operations'.

Closure )f
Letus considerthe five operations given above when used in the
set Z+.We notice that, although x *y e Z+for allx,y e Z+ when

* represents addition, the same is not true when * represents

subtraction; for example, 2 - 3g Z+. In fact, we can only be
fully

confident that x * y will always be an elementof Z+ for addition,

multiplication and exponentiation.

We describe this
formally by saying:

'
Z+ is closed under addition,multiplication or exponentiation.'

c
Z+ is not closed under subtraction or division.'

)

1

r

1

}z 3^^
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KEY POINT 2.2

For an operation * on a set S, S is said to beclosedunder *

if x * y g S for all x, y
e S.

Note that the closure property requiresthis to hold for all

elements. It only takesa singleexceptionfor closure to be lost. 1h

H

+a.

orked example2.2

Which of the following sets is closed under the
given operation?

(a) Z under multiplication (x)

(b) R under division (-5-)

(c) Q\\{0} under division (-5-)

(d) Q+ underexponentiation(A)

(e) Z under subtraction (-)

(f) {-1,0,1}undermultiplication (x)

Establish that x * y e S for all x,y e S

or give a counter-exampleto prove

non-closure

(a) Closed: the product of two integers is

also an Integer

(b) Hotc\\oeed:a + 0<\302\243R forallaeR

(c) Closed: the ratio of any two non-zero rational

values is also a non-zero rational value

1
(d) Not closed: for example,2^-^Q+

(e)Closed:the difference of two integers is

also an Integer
(f) Closed: the product table for this three-

element set under multiplication is

r*

-1

\\o

1

-1

1

0

-1

0

0

0

0

1

-1

0

1

v>

w*

)

y

Noticethat the most direct approach to answering part (f) of
Worked example 2.2 was to show all the possibleresultsof
theoperationin a table as there was a (very small) finite set of

elements. This is an exampleof a 'Cayley table', named after

mathematician Arthur Cayley.

- Q,
y*\\k

hn
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KEY POINT 2.3

For an operation * on a finite set S = {a1,a2,...,an},the
Cayley

table is laid out as follows:

*

\"l

\302\2532

a n

fli

ax * Oj

a2*ai

a * a,n 1

\302\2532

ax
*

a2

fl2*a2

an^a2

a
n

a * a1 n

a* a2 n

a * a
n n

Each cell of the grid is theresultoftheoperationtaking

its first operand from the row title and its secondoperand
from the column title.

<i-

H

+a.

A.

JCT.

orked example 2.3

Operators * andD are definedonthesetS = {0,1,2,3} by

a*b = a1+b-b1+aandaob = -(a-2b +
\\2b-a\\).

Draw out the Cayley tables for * on S and \302\260
on S, and state whether each is closed.

For each cell, combine the row title*

with the column title according to the

formula given. So, for example

0*2 = 01+2-21+0=0-2 = -2

Completethe Cayley table*

The set is closed under the operation

if all elements in the cells of the table

are elementsof the original set

A single example is sufficient to*

demonstrate an operation is not

closed

*

0

1

2

3

0 1 2

-2

3

*

0

1

2

3

0

0

1

2

3

1
-1
0
3
&

2

-2

-3

0

11

3

-3
-3
-11
0

As shown in the table, * is not closedon 5; for

example, 0,1 e 5 but 0 * 1 \302\2435

o

0

1

2

3

0

0
1
2
3

1
0
0
0
1

2

0

0

0

0

3

0
0
0
0

As shown in the table, \302\260
is closed on 5, since

flo beSfor all a,beS

Topic 8 -
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Commutativity

We know that for the operations addition and multiplication,
the orderof the two operands makes no difference to the result,
whether we are using elements from N, Z, Q, R or C.

x + y \342\200\224
y + x for all x,y

xxy \342\200\224
yxx for all x,y

Subtraction, divisionand exponentiationdonothave this

property, since the order cannot be reversedfor every pair of

elements in the number set.

Any operation for which the order of operands chosenmakes
no difference to the result is said to be commutativein that set.

KEY POINT 2.4

An operation
* on a set S is said to be commutative in S if

x *y \342\200\224
y * x for all x, y e S.

Ifthe row and column titles of a Cayley tablearelaidout

in the same order then, for a commutative operation, that

table will be symmetrical about the leadingdiagonal.

<i-

v>

w*

+flc

orked example 2.4

Which of the followingoperationsis commutative for the given set?

(a) x*y is definedin Z asx^y- xy
+ x + y

(b) xoy is defined in R as xoy
= 2X \342\200\224V

(c) x%y is defined in {1,2,3,4,5} asxty = 2xmin(x,y)-max(.x,;/)

Demonstrate x*y
= y*x or find a

counter-example

Demonstrate xoy = yox or find a ##

counter-example

Demonstrate x$ y = y X x or find a'

counter-example

(a) Commutative

x*y = xy + x + y

= yx + y + x
= y*x

(b) Not commutative. For example,
201= 22-21=2
l02=21-22=-2

(c) Commutative

x$y = 2m'm(x,y)-max(x,y)
= 2m'm(y,x)-max(y,x)
=

y + x

)

y

- Q,
y*\\k

hn
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Identity element

An identity element for a given operation has thepropertythat

it leaves unchanged every other element in the givensetunder
theoperation.The identity element for an arbitrary operation
is

usually represented by the letter e. (Note that this is different

from the real constant,e=2.718...)

KEY POINT 2.5

For an operation * on a set S, an element e is said to bethe
identity

element if it is both a left-identityand a right-
identity

for the operation in S:

e*x = x*e = x\302\243ora)\\ xeS

The row of the identityelemente in the Cayley table will

match the title row, and thecolumnofewill match the title

column.

Not every operation on a setwill have an identity element

within the set, and someoperationsmay
not have an identity

element at all.

<i-

v>

wr

+\302\253c

EXAM HINT

If the operation is not commutative, we must check both that e * x = x and also that x * e = x
for all x. For an operation * on a set S, an element eLeS is said to be a left-identity element if

eL *x = x for all xeS . For an operation
* on a set S, an elementeReS is said to be a right-

identity element if x*eR = x for all xeS. It is perfectly possible for an operation to have several

left-identity elements and right-identity elements, but there can only be one two-sidedidentity

element.

orked example 2.5

Prove that an operation * in a set S can have at most one identity element.

Proof by contradiction: \342\200\242

Suppose that there are two such

elements

Demonstratelogically that they must be*

exactly equal

Suppose<?-,

for * in 5

Then ey * e2

because ez
and ey*e2--

,e2g

=
<?i

is an

= e2

5 are both identity

identity

elements

0)

(2)
because <?-, is an identity

=> <?-,
= e2 (from (1) and (2))

/. There can never be two distinct identity

elements for an operation in a given set.

)

y

Topic 8 -
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orked example2.6

For each of the following operations, determine the
identity element, if there is one, within the

given set.

(a) Multiplication in M

(b) Addition in Z

(c) t in {3,4,5,6,7}where t is given by x t y
- max (x, y)

(d) * in Q where * is given by x*y =
y

Find an identity or demonstrate that no\"

such element can exist
(a) <5 = 1

1 x x = x x 1= x for all x e R

(b) e =0
0 + x = x + 0 = x for all x eZ

(c) e = 3
Sincex>3 for all x e {3,4,5,6,7},

=> 3 t x= x t 3 = x for all x e {3,4,5,6,7}

(d) No identity element

Every element in the set is a left-identity,
but there is no right-identity, and hence no

identity element.

Proof by contradiction:

Suppose there is an identity element e.

There are at least two elements in Q; hence

there exists an element a e Q,a ^ <5

# * e = e by the definition of *

=>a*e\302\261a elnce e\302\261a

This contradicts the right-identity

requirement on <5.

There is no identity element

Inverse elements

If a givenoperation* in a set S has an identity, then we canalso
introduce the concept of inverse elements.

KEY POINT 2.6

For an operation * on a set S with identity e, an element
y

g S is said to be the inverseof xeS if* * y
\342\200\224

y^x-e.

In such a case,y may be written as x~l.

We must take care. We are now considering abstract operations;
the superscriptc\342\200\2241' should not be interpreted as an exponent in
thenormalarithmetic sense.

Take for example the set Z underaddition.As demonstrated

in Worked example 2.6, the identity for addition(calledthe

additive identity) is 0.

\342\231\246^f
You have already met

Jf ij% superscriptswhich are

not arithmetic

components. Compare
how you interpret the -1

in 5_1 and in sin_1x

)

4o

y

M \302\253

- c\302\273
r*i>r

Kn
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Our starting point was

familiar arithmetic 1
operations, from which we

generalised and made
observations on more abstract
operations.Which then is more

fundamental, the familiar or the
abstract?

Sofor a to be the inverse of 2, we requirethat 2 + a \342\200\224a + 2 \342\200\224Q.

Hence, under the operation addition in Z, 2_1 = -2, a statement

that in other contexts would seem
utterly

false!

More generally, in Z under addition, x~l\342\200\224\342\200\224xfor all x e Z.

Not all elementsneedhave an inverse within the set.

For example,in IR under multiplication, the identity element is
1 (themultiplicative identity) so for every element xeM. with

x^09x-1 = \342\200\224.

x

However, the element 0 has no inverse,asthereisno element in

R whose product with 0 is 1.

1h

H

+a.

-^ i

orked example 2.7

(a) Find the inverse, if it exists,of 3 in Q undermultiplication.

(b) Find the inverse, if it exists, of 7 in N under t, where t is given by x t y
\342\200\224max (x, y).

(c) Find the inverseofx in N under *, where * is given by x * y
\342\200\224

\\x
-

y\\.

(d) Find the inverse of xin IR under *, where * is given by x*y =
xy

+ x + y and state which
valuesofx have no inverse under *.

First find the identity element for\302\273#

the operation. Standard identities

(multiplicative and additive) may be

quoted. Others should be established

State and prove an inverse\342\200\242\342\200\242

Find the identity element for the*

operation

Either state and prove an inverse, or*
demonstraterigorously the absence of

any possible inverse

Topic 8 -
Option: Sets, Relations and Groups

(a) Multiplicative identity e = 1

1 ^ ^ 1
-x3=3x-=\302\243
3 3

_ \302\2531

(b) max(x,0)
= max(0,x) = xfor all xeN

max(x,7) > 7 for all x e N

/. there is r\\o element xeN such that

max(x,7) = 0
thereis no inverse for the element 7

(c) x * 0 = 0 * x = x for all x e N

Let y = x~1 under *

=>x * y - y *x - o
=>\\x-y\\

= 0

.*. x_1 =x for all xeN

v>

w*

)

y
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continued

(d) x*0 = 0*x =xforallx<

Lsty
= x~1 under*

=> * * y
- y * * - c

^xy + x + y = 0

=>y(jc+l)= \342\200\224x

>y:
x + \\

when x ^ -1

Since no such element exists in K. when x = -1,

every elementexcept-1has an inverse under *

H
a

+flc

Notice that in Worked example 2.7c,we found that every element

was equal to its own inverse;that is, every element in the set is 'self-
inverse'.

KEY POINT 2.7

For an operation * on a set S with identity e, an element
x e S is said to be self-inverse if x * x \342\200\224e.

Associativity

Consider adding three numbers together:

4+ 3+ 1

We have two operations to perform (both addition).Doesit
matterwhich we choose first? In other words, will we geta
different answers from (4 + 3) +1 and 4+ (3+1)?
We know that the answer is no, and sowe are quite happy to

write the originalexpressionusing
no brackets at all.

However, in the caseof subtraction,we do get different results

from (4-3)-land 4-(3-1).

We say that an operation applied repeatedly in this
way

is

associative if the position of parenthesesmakesno difference

and 'not associative' if parentheses are significant.

Addition is associative in IR, and we can simplydropthe
parenthesesand write:

x + y + z

when adding threeelements
together.

Subtraction is not associative in IR, because parentheses are

required to specify which calculationisto beperformed first.

KEY POINT 2.8

An operation * on a set S is said to be associativein S if and

only if x *
(y

* z) - (x *
y)

* z for all x,y,z e S.

- Q,
y*\\k

hn
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orked example 2.8

Which of the following operations is associative in the givenset?

(a) x*y is defined in Z d&x*y =
xy

+ x + y

(b) xoy is defined in R as xoy
= 2X - V

(c) xiy is definedin {1,2,3,4,5}asxiy =
2xmin(x,y)-max(x,y)

Demonstrate x *(y *
z)

= (x * y) * z or \342\200\242

find a counter-example

Demonstrate xo(yoz) = (xoy)ozor find a*

counter-example

Demonstrate x$ (y$z) = (xiy) %z or find \342\200\242

a counter-example

(a) Associativa

x*(y*z) = x*(yz + y + z)

= x(yz + y +z)+ x + {yz + y + z)
=

xyz + xy + xz + yz +x + y + z

= (xy + x + y)z + (xy + x + y) + z

=
(xy + x + y)*z

= (x*y)*z

(b) Not associative: for example,
1o(2o3) = 21-(22-23)

=2-(-4)
=6

(1o2)o3
=

(21-22)-23

= -2-3
= -10

(c) Not associative: for example,
1 $ (5 $ 5) = 1$ (2min(5, 5)

-
max(5, 5))

= -1*5
= -3

(1 * 5) * 5 =
(2min(1, 5)

-
max(1, 5)) $ 5

= -3$5
=-11

v>

w*

)

If an operation is associative,thepositionofbrackets makes

no difference to the end result.We can, for simplicity, not write

them at all:

x*(y*z) ={x*y)*z=
x*y*z

In particular, it is convenient to use the shorthand form

X * X \342\200\224X2

x*x*x = x3

x*x*x*...*x = xn
V ^ J

n times

y
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Be aware that the indices n2, n3 and nn used here are not

necessarily the sameas exponentsin arithmetic, which

specifically indicate repeated applications of multiplication.

However,the
following familiar rules of exponents do still hold.

KEY POINT 2,9

I For an associative operation * acting on a set S with

x, y g S and for any positive integers m and n:

y-m >f y-n \342\200\224ytn+n

I
(xm)n

= xmn

If the inverse element x~l exists:

| x-n=
(xn)~l

I
However, only if * is commutative can we assertthat:

xn * yn =(x* yj1

Finally we canconsiderthe interaction of two different

operations.

Distributivity

Put simply,this is the
quality

which allows us to expand
brackets. More

formally:

KEY POINT 2.10

For two operations * and o acting on a set S, * is

distributive over \302\260if x *(y
o z) = (x *

y)
o (x * z) f\302\260raU

x,y,zeS.

You are already familiar with an exampleof this property in
basicalgebra:
In all standard number sets, multiplication is distributive across
addition,since:

xx(y+
z)

=
(xxy) + {xxz)

However, the reverseis not true.Addition is not distributive

across multiplication, since we cannot
say

that:

x + (yxz)
= (x + y)x{x + z)

-SrOfN*.
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orked example 2.9

Forwhich of the following operations is * distributive over o ?

(a) In R: x*y = x(7+l),x0y =
x-y

(b) In Z: x*;/ = max(x,7), Xoy
= ^ + JT

(c) In Q : x * y
= 3xy, x o y = 2x -

y

Evaluate x*(y\302\260z) and (x^y)o(x>f z) \342\200\242*

Determine whether they are equal for all
\342\200\242

x,y,z in the given set, giving a

counter-example if not

Evaluate x *(y\302\260z) and (x * y) \302\251(x * z) ##

If you are not sure whether the two \342\200\242\342\200\242

are always equal, try some numbers.
Determine whether they are equal for

all x,y,z in the given set, giving a

counter-example if not

Evaluate x*(y\302\260z) and (x*y)o(x*z).

Determine whether they are equal for

all x,y,z in the given set, giving a

counter-example if not

{a) x*(yoZ) = x*(y-z)
= x(y-z + l)

= xy-xz + x

(x * y)
o [x * z) = (xy + x)

o (xz + x)
= xy +x-

(xz
+ x)

-xy -xz

=> x * (y
o z)

= (x * y)
o (x * z) only if x = 0

=^ x- is not distributive over o in R

(b) x*(yoZ)
= x*(y + z)
=

max(x,y + z)

(x * y) o(x * z)
= max(x,y) omax(x,z)

= max(x,y)+ max(x,z)

Takex = 3,y = 2,z =1:

3*(2o1)= 3

(3*2)o(3*1)
= 3 + 3 = 6

.\\3*(2ol)5t(3*2)o(3*1)
=> * is not distributive over o in Z

(c) i>f(yoz) = i>f(2y-z)
= 6xy - 3xz

(x
* y)

o
(x * z) = (3xy) o

(3xz)

= 6xy
- 3xz

:. x *
(y

o z)
= (x *

y)
o (x * z) for all x,y,z g 5

=> * is distributive over o in Q

The scalar triple productof three vectors a, b and c is given as o\302\273(b x c). This is an

example of a ternary operation as it takes three elements to produce a result. Investigate the

properties of the scalar triple product,and considerhow the concepts of closure,

commutativity and associativity, as defined above for binary operations, might be interpreted

for ternary operations.

6 *
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Exercise 2B

1. Binaryoperations* and o are defined in R by:

x*y \342\200\224x \342\200\224
y + 3> xoy \342\200\224'i \342\200\224

xy

(a) Find:

(i) 3*2 (ii) 7o2

(iii)-2*1 (iv) -4o3

(b) (i) Show that * has no identity element,

(ii) Show that o is commutative.

(c) Solve for x:

(i) x * 2 = 6 (ii) x o2 = 7

2. State which of the qualities

(A) closure

(B) commutativity

(C) associativity

apply to each of the
following operations:

X H~ V

(a) * in Q where x^y \342\200\224\342\200\224

(b) * in Z where x*y = ?>x \342\200\224
2y

xv
(c) * in R \\ {0} where x * y = \342\226\240

x + y

(d) *in {2W |neQ} where x*y = .x+ ;/

3. Where it exists, state the identity of the
following

and find the

general form of an inverseto elementx:

(a) (i) R under * where x*y=x+y+l

(ii) R under* where x * y = 2xy

(b) (i) Thesetofnon-zerovectors of three-dimensional space

under vector product.

(ii) Thesetofvectorsofthree-dimensionalspace under

vector addition.

\\y-x\\
(c) (i) Q under * where x * y \342\200\224

l + xy

(ii) C \\ {0} under * where v * w = | v
|cis( arg( w) J

4. Draw the Cayleytable,determineclosure and identify the

identity element (if it exists)for:

(a) {0,1,2,3} under * where x*y = \\xy-x- y\\

(b) {0,2,4,6 j under * where x * v = \342\200\224

4

(c) {7,8,9} under * where x*y = max(x,y)

Q, 2 Sets and operations
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5. Operations * and o are defined on a set ScZ
by:

a^b \342\200\224
max(a -b,b-a)

aob \342\200\224ab \342\200\224a \342\200\224b + 2

(a) Which of the
following

is true?

(i) * is closed on Z

(ii) * is closed on N

(iii) o is closedon {0,1,2,3}
(iv)

o is closed on N

(b) Which of the
following

is true?

(i) * is commutative

(ii) o is commutative

(c) Which of the following is true?

(i) * is associative

(ii) o is associative

(d) Determinethe
identity element, if one exists, for:

(i) * in Z+

(ii) o in Z

(e) Determine for which xeZ there is an inversexr1and
expressx~l in terms of x.

(i) * in Z

(ii) o in Z

Operations * and o are defined on

x *
y

\342\200\224
xy and x o y \342\200\224

yx

Show that o is distributive over *.

by:

For k g Z, the binary operation *fc
is defined for x, y e Z+ by:

x*ky = x+y-k
Determine whether or not *. is:

k

(a) closed

(b) commutative

(c) associative

Find:

(d) the
identity

element of
*fc

(e) the subset of Z+ having an inverseunder
*fc

1h

v>

w*

)

y

Q Foran operation
* on a set A, an absorbingelementz is defined

as any element such that a * z \342\200\224z * a = z for all a g A.

(a) Prove that:

(i) There can be at mostone
absorbing

element for an

operation *.

(ii) An absorbing element can have no inverse under *.

i>\\24 Topic 8 -
Option: Sets, Relations and Groups
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(b) Find an absorbing element for:

(i) Q undermultiplication

(ii) Z+ under gcd (greatest common divisor)

(iii)R under * where x*y = xy-2x-2y + 6

Operations on sets
Now we have some general terminology for operations,we can
considerthe various operations which act upon subsets of U.

Union of sets
A u B is the union of A and B, a set containing all elementsof

A and all elements of B; for example

{1,2,3}u {1,3,5}=
{1,2,3,5}

Notice that elements 1 and 3 werepresentin both sets on the

left side, but are
only

listed once in the union because elements
arenot repeatedwithin a set.

AkjB

Properties of union: for any sets A,B,CczU

1h

v>

w*

+flc

AkjB = BkjA

Au(\302\243uC)
=

(Au\302\243)uC

Au0 = A

AuA' = l/

Union is commutative

Union is associative

0 isthe identity for union

The union of complementary
setsis U

Intersection of sets
A n B is the intersection of A and B, a set containing only
those elementspresentin both A and B; for example,

{1,2,3}n {1,3,5}= {1,3}

y

AnB

- c\302\273
r*i>r

Kn
+ 0(.
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Any
two sets whose intersection is the emptysetaretermed

disjoint sets; for example,

{1,2,3} n {4,5}= 0

Hence
{1,2,3}

and {4,5} are disjoint sets.

Ar\\B = 0

Properties of intersection: for any sets A,B,C c [/

AnB=BnA

An(BnC) =
(AnB)nC

AnU = A

AnA' = 0

Intersectionis commutative

Intersection is associative

U is the identityfor intersection

Complementarysetsare disjoint

11-

1h

V>

w*

+^c

You will often need

to quote theserules

of distributivity
ot

intersection
and

Union,birtwi\302\253no*be

expected
to prove

them algebra.cally,
though yoo may

have to illustrate

them using Venn

diagrams.

Now that we have a cleardefinitionofunionand intersection,

we can make a formal definitionof the idea of a partition:

KEYfOINT 2.1J

Theset A is partitioned by non-empty subsets B1,B2,...if

Bt nBj-0 for any i & j (the subsetsaredisjoint)

B1kjB2kj...
= A (the union of all the subsetsequalsA)

We have already met a very simpleexampleofa partition:

A and A' partition U, as illustratedin the diagramfor

complementary sets in Section 2A.

Properties of
distributivity

for intersection and union: for any
setsA,B,C^U,

An(BvC) =
(AnB)v(AnC)

Au(\302\243nC)
= (Au\302\243)n(AuC)

Intersection is distributive over

union

Union is distributive over
intersection

y

Topic 8 -
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An(BvC) = (AnB)v(AnC) Av(BnC) = (AvB)n(AvC)

Setdifference

V A\\B has already been loosely describedin Section2A of this

chapter; it is called the relativecomplementorsetdifference of

A and B and can now be
formally

defined as:

A\\B = AnB'

e.g. {1,2,3}\\{1,3,5}={2}

Mf Some texts may use the

jf^l%a Iter native notation

A - 8, sincewe begin

with the elements in A

and then remove any elements
which also appear in 8.

+flc

Notice that set difference is not commutative: A \\B is not

equivalent to B\\A:

e.g.{1,3,5}\\{1,2,3}=
{5} y

^ 3*h*hl + 0(.
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Properties of set difference: for any sets A,B^U

(A\\B)n(B\\A)=0

A\\A = 0

A\\0 = A

Reversed set differences are

disjoint
Self-difference is the

empty
set

0 is the right-identity for set

difference

Set difference is not generallycommutativeor associative.

Symmetricdifference
A A B is the symmetric difference of A and B, and is the set of
those elementswhich are members of exactly one of A and B,

but do not lie in their intersection;for example,

{1,2,3}A{1,3,5} = {2,5}

<i-

v>

w*

AAB

+flc

Notice that we could definethis eitherasthe union without the

intersection,

AAB = (AvB)\\(AnB)

or as the union of the two relative complements

AAB=(A\\B)u(BM).

Propertiesof symmetricdifference:for any sets A, B, C cz U

AAB=BAA

AA(BAC) = (AAB)AC

AA0 = A

AAA = 0

Symmetric differenceis
commutative

Symmetricdifferenceis
associative
0 is the identity for symmetric
difference

Every set is self-inverseunder
symmetricdifference

)

y
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orked example 2.10

U = {xe N|x<8},A = {1,2,3,4,5} and B = {1,2,4,6}.

Listtheelementsofthe following sets:

(a) A' (b) A\\B (c) AuB

(d) AnB (e) AAB

It helps to list the elements of the#

universal set
U = {0,1,2,3,4,5,6,7}

(a) A'= {0,6,7}

(b) A\\5 = {5,5}

(c) Au6 = {1,2,3,4,5,6}
(d) An 0 ={1,2,4}
(e) AA6 = {3,5,6}

De Morgan's laws

We have already seen that union and intersectionare
distributive over each other.

We can also show,usingVenn diagrams, that the complement
of an intersectionis the union of complements, and that the

complement of a union is the intersectionofcomplements:

KEY POINT 2.12

De Morgan's laws state that:

(AkjB) =A'nB'
(AnB)'=A'kjB'

{AuB)'= A'nB'

(AnB)'
= A;KjB'

You may
be asked

for proofs using set

algebra.In rnost

cases, yoo
shoo Id

expect to use either

De Morgan's
\302\273aws

or the rules or

distributive
of un,on

and intersect\302\273on,

both of which can be

quoted.
You should

neverberequ.redto

prove
De Morgan s

taws algebraically.

1h

V>

W*

y

- Q,
y*\\k

hn
+ 0|..
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orked example2.11

Prove that A \\(BuC)
= (A \\B)n(A \\C).

Proof that two sets equal each other:
Prove that each is a subset of the other

Take an arbitrary elementin the left*

hand set and show it must be an

element of the right hand set

Then repeat, showing that an element of*

the RHS must be an elementof the LHS

Having established each is a subset of*

the other, we can conclude the sets are
equal

Suppose xgA\\(&kjC)

=^igAand xe(5uC)'

=^igA and xe3' nC by De Morgan's law

=^igA and xe&' and xeC
=>xeAn&' andxeAnC
:.A

\\{3uC)c(A \\3)n(A \\C) (1)

5uppoeexe(A\\3)n{A\\C)

=^> xeAn&' and xeAnC

=^igA and xe3' and xeC'

=^> xeAand xefr'nC

=^> x e A and xe(5uC)' by De Morgan's law

/. (A \\3) n (A \\C) cA\\(^u C) (2)

(1)&(2)
=> A\\(BuC) = (A\\B)n(A\\C)

orked example2.12

Prove that for any sets A and \302\243,A\\jB- AnB if and only if A = B.

Proving if and only if: Prove each*

direction separately

Proof that two sets equal each other: \342\200\242

Prove that each is a subset of the

other

Proofthat Akj B = AnB^> A = B:

Assume A\\jB- AnB

Topic8 -
Option: Sets, Relations and Groups
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continued...

Take an arbitrary element in the left*

hand set and show it must be an

element of the right hand set, then do

the equivalent steps to show that an

element of the right hand set must be an

element of the left hand set

Prove the other direction\342\200\242

Combine the two to prove logical \342\200\242

equivalence

Take an element aeA

^cieAkjB by definition of union

=> agAPiB by assumption

=^ aeB by definition of intersection
/. Every element of A is also in 5

Take an element beB

=^ fc e A u B by definition of union

=> bEAr\\B by assumption

=^beA by definition of Intereectlon
/. Every element of 5 is also in A

=> BcA

(1)&(2) => A = \302\243

:.AuB = AnB=>A = B

Proofthat A = B^> Akj B = AnB
Assume A = \302\243

=^> A u \302\243= A and A n \302\243= A

=> Au\302\243 = An\302\243

.\\A = B=>AuB = AnB

(3)&(4) =^AuB = AnB
if and only if A = B

o)

(2)

(3)

(4)

11-

1h

V>

w*

+^c

Exercise 2C

If (7= {a,b,c,d,e,f,g,h},A- {a,b,c},B- {c,d,e},C- {b,g,h}

(a) Find: (i) AkjB (ii) AuC

(iv) B'kjC

(ii) BnC

(iv) A'nB'nC

(ii) A'\\C

(iv) Bu(A'\\C)

(ii) A AC

(iv) (A'AB')AC'

(iii) AuB'

(b) Find: (i) AnB

(iii) A' nC

(c) Find: (i) A\\B

(iii) fl'\\C

(d) Find: (i) AAB

(iii) A'A C

)

y

2. DrawVenndiagramsshowing A,B,C<^U, shading the area

representing:

(a) AkjB

(c) AnBnC

(e) Au(E'AA')

(b) Au(CnB)

(d) An(BAC)

- Q, v>i>r
hn

+ 0|..
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3. For an operation * on a set A, a left-absorbing element z is

defined as
any

element such that z *a = z for all a e A, and a

right-absorbingelementz is defined as any element such that

a^z-z for all a e A.

Forthe
following operations in 17, identify the left- and

right-absorbingelementsof U,if they
exist.

(a) Union

(b) Intersection

(c) Setdifference

* (d) Symmetric difference

)

I CT Prove that for any sets A and B:

AkjB = A<^B<^A

Prove that for any sets A and B:

AnB^A^A^B

g Prove that for any set A cz U:

AAL/ = A'

Define the operation * on the sets A and B by A *B = A' u B'.
Show algebraically that:

(a) A*A = A'

(b) (A*A)*(\302\243*\302\243)
= Au\302\243

(c) (A^)^(A^B)
= AnB

Q(a) Usea Venn diagram to show that (A u B) =A'nB'.

(b) Prove that
((A' u B) n (A u B'))' = (A

n B)' n (A u B).

Q Foreach n e Z+, a subset of Z+ is defined
by:

Sn
=

{ x g Z+ | n divides x }
(a) Express in simplest terms the membership of the

following

sets:

(i) S, (ii) S2

(iii) S2nS3 (iv) S6\\S3

(b) Provethat(A\\B)u(B\\A)
= (AuB)\\(AnB).

32 Topic 8 -
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Summary

In this chapter we
formally

examined the structure and rules surrounding sets,and encountered
thealgebraicconcept of a binary operation, which combines two elementsof a setundera defined

rule to produce a new element.

For a setA:

B is a subset of A if all elements of B are alsoelementsofA.

AcB and BcA if and only if A = B.

A', the absolute complement of A, containsallelementsnot in A.

An operation * on a set A:

* is closed on A if x *
y e A for all x,y e A.

* is commutative on A if x *
7

= y * x for all x,y e A.

* is associative on A if (x *
y)

* z = x *
(7

* z) for all #,7,2: e A.

For an associative operation * acting on a set S with x,yeS and for any positiveintegersm
and n: xm*xn = xm+n

and(xm)w
= xmn.

e is the identity elementof * if e * a = a * e = a for all aeA and is unique.
If*has an identity then for a given element aeA,
its inverse element a-1 is the unique elementsuchthat a*a~l -a~l * a = e.

For an operation * on a set S with identity e, an element xe S is said to be self-inverse if
x = e.

distributive over another operation o on A if x * (y
\302\260

z)
=

(x * y) \302\260(x * z) for all x, y,z e A.* is

For sets A and B:

AuB, theunion ofA and B, contains all elements of A, B orboth.

AnB, the intersection of A and B, contains all elementsin both A and B.

A and B are disjoint wheneverAc\\B = Q5 .

A \\B, the set difference of A with B, contains all elements in A not in B.

A A B, the symmetric difference of A and B, contains all elements in one of A and B but not

both.

Union and intersectionare
mutually

distributive:

Au(\302\243nC)
=

(Au\302\243)n(AuC)

An(BvC) = (AnB)v(AnC)
De

Morgans
laws state that:

(AnB)'=A'uB'

(AuB)'=A'nB'

1-

1h

v>

w*

y

- Q,v>i>r
hn
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\342\200\242To prove A-B, prove both AcB and BcA.

\342\200\242Subsets B1,B2,... partition A if

Bt nBj
= 0 for j &j (subsetsarepairwise disjoint)

and

B1kjB2kj...-A (the collective union of the subsetsequalsA)

H
a

+flc
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Mixed examination practice 2

Use a Venn diagram to show that for any two sets A,\302\243cz 17, the three sets

A A B, A' n B' and A n B partition U.

Use Venn diagrams to show that:

(a) Au(BnA,),=AuB/

(b) UAnB/uBj
=0

Set V2 is the set of vectors with non-zero elementsin two-dimensional space,

and operation * on V2 is given by:

[b]

*
d

(ac\\

\\bd)

(a) Show that V2 is closed under *.

(b) Find the
identity

element for * and determine the inverse of the general

element
VhJ

eV2.

(c) Establish whether * is associativeor commutative in V2.

ab
The binary operation a * b is defined by a * b = where a, fo e Z+.

a + fo

(a) Prove that * is associative.

(b) Showthat this binary operation does not have an identityelement.

[11marks]

(\302\251IB Organization 2005)

Prove that symmetric difference * is distributive across intersection n.

Q LetX bea set
containing

n elements, where n is a positiveinteger.
Show that the set of all subsets of X contains2n elements.

Define the operation # on the setsA and Bby A# B-A'\\jB\\

Show algebraically that

(a) A#A = A';

(b) (A#A)#(B#B)=AvB;

(c) (A#B)#(A#B)=AnB. [6marks]
(\302\251IB Organization 2005)

2 Sets and operations



Q A binary operation is defined on Q \\ {0} by:

{x*y-xy ifx>0

\\ x

\\x*y
= \342\200\224ifx<0

I y

(a) Determine the identityelementfor *, if one exists.

(b) Establish whether * is associative, commutative and closed in Q \\ {0}.

^\302\243
For any positive integer a, define set Ka a Q+ by Ka \342\200\224

\\an \\n e Z}.

(a) Show that Ka is closedundermultiplication and division, but not

addition or subtraction.

(b) Prove that n(Ka n Kb) > 1 if and
only

if a \342\200\224bq for some q e Q+.

Topic 8 -
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Ordered

pairs,

relations

and

functions

You will have met the concept of relationsand functions as part
of thecore

syllabus,
and should be familiar with a wide

variety

of functions from all parts of the core
syllabus. Previously the

emphasis has been on the patterns,graphs
and applications of

functions, but in this chapter we shalldiscussthe
underlying

structures of functions and examine them as maps betweensets.

In this chapter you
will learn:

\342\200\242how to structure

elements in ordered

pairs

\342\200\242about binary relations

between sets

\342\200\242classification of

relations as transitive,
reflexive and

symmetrical
\342\200\242about equivalence

relations

\342\200\242about congruence

modulo n

\342\200\242about functions

\342\200\242to classify functions as

injective, surjective or

bijective
\342\200\242about inverse

functions.

+flc

-^ 4

V

fr

Ordered pairs

In Section2Cof this option we

looked at ways to compareand
combinesets,but we also need

to pair up elementsfrom oneset
with elements from another. For

example, consider a restaurant
menuwhich lists starters and

main courses. We might wish to
chooseoneitemfrom the list of

starters and one from the list of
maincoursestomake our meal.

S: Starters

Soup

Salad

M: Mail

Fish

Meat

Vegetan

Stantena,

Soup

S<vUd

'TftcUtte,

*?&&

'THeat

l/eyetarUatt

ti courses

Lan

Our selection might be soup followed by the
vegetarian option,

or salad followed by fish.

Usingformalnotation,we would show that the options came
from the setoforderedpairsSxM,and would list each as a

bracketed pair: (soup,vegetarian)
and (salad, fish).

y

* >

I

)[ as
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Sx Mis referred to as the 'Cartesianproduct'ofthe two sets

S and M. An element of S x M consists of an ordered pairof
elements,the first from S and the second from M.

We are already familiar with this notation when appliedto
pairedvalues, each drawn from R; we generally interpret
themastwo-dimensionalcoordinates(x, y) drawn from R x IE

(which is often written as M2).

KEY POINT 3.1

The Cartesian product of two setsA and B is denoted A x B.

Ax Bis thesetofall ordered pairs (a, b) such that aeA
andbeB.

AxB ={(a,b)\\aeA,beB]

1h

H

+a.

Completing
the menu example above, we see that SxM

contains 6 elements:

Sx M- {(Soup,Fish), (Soup, Meat), (Soup, Vegetarian),

(Salad, Fish), (Salad,Meat),(Salad, Vegetarian)}

It is clear from the way that the product is generated that

for any two setsA and B:

n(AxB)
= n(A)xn(B)

As may be supposedfromthename'orderedpair', the order in

which the pair of elementsappearis significant;
after all, the

coordinate (2, 3) is different from (3, 2).

KEY POINT 3.2

Two ordered pairs(a,b) and (c, d) are equal if and
only

if

a- c and b-d.

v>

w*

orked example 3.1

If U = {1,2,3,4,5},A={1,3,5}and B = {2,3}, list the elements of:

(a) AxB (b) A'xB' (c) Bx0

List the elements methodically.
\342\200\242

Total number of elements will be

n(A) x n(B) = 6

List the elements methodically.
\342\200\242

Total number of elements will be

n{A') x n[ff) = 6

(a)/\\x0 = {(l,2).(l,3).(3,2),(3,3),(5,2).(5.3)}

(b) A' =
{2.4},0'

= {1,4,5}.

/\\'X0' = {(2,1),(2,4),(2,5),(4,1),(4,4),(4,5)}

n(0)
= 0 so there are no elements\342\200\242*

(c) 5x0 = 0

^jv3^ Topic 8 -
Option: Sets, Relations and Groups
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orked example 3.2

If A =
{1,3} and B = {1,2},plot theelementsofthe set A x B on a cartesianplane.

List the elements methodically.
\342\200\242

Total number of elements will be

n(A)xn(B)
= 4

AxB = {(l,l),(l,2),(3,l),(3,2)} 11-

1h

v>

w*

+^c

Exercise 3A

1. For U = {0,1,2,3,4},A ={0,4} and B = {2,3}, find:

(a) AxB

(b) A'x(A'\\E)

2. Plot AxBon the Cartesianplanewhen:

(a) A =
{2,3,5},B

= {0,1,4}

(b) A =
{1,2,4}

= B

3. ForA - {a,b,c,d,e},B- {a,e,i,o,u],C-{l,2,4,8},D-{x2\\xeZ],

find the following:

(a) (A\\B)x(B\\A)

(b) (AxC)n(BxD)
(c) (AnB)x(CnD)

4. A restaurant menu has three lists of food options:Starters,Main

courses and Desserts, given as sets S,M and D.
The restaurant runs some discount 'meal deals'.The set of
available meal deals is P.

Interpret in words the
following

mathematical statements:

(a) SnM\302\2610

(b) P = (Sx(M\\S))u((SuM)xD)
(c) Pn(SxMxD)

= 0

Y
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5. Prove or disprove:ForsetsA and B, if A is an infinite set then

A x B is an infinite set.

Prove that set union is distributiveovercartesianproduct.

H

+\302\253c

Binary relations and numerical

congruence
Now that we have established some rules for set algebra and

introduced the concept of ordered pairs,we can define the

concept 'relation'. You should have encountered relations and

functions already in your studies,but we cannow make more

rigorous definitions.

\342\200\242A binary relation is a set of ordered pairs,and hence is a

subset of a Cartesianproduct.
\342\200\242A relation may be an arbitrary subsetof a Cartesianproduct,

but there is usually some underlying rule governingwhich
elementsappearwithin the relation.

As with operations, there are relationsonorderedtriples,

and indeed any n-tuples. We shall onlybe
investigating

the properties of binary operations, and so for simplicity,

subsequent references will be to 'relation ratherthan

'binary relation.

Most of the examples in this textand in the examination will

focus on the algebraicand numerical, but relations, like sets, can
cover

any
context.

For example:

1. C- {colours}, D=
{France, Japan, Sweden}

define relation R by:

(c,d) g R if and only if c is a colour in the national flag of d

then:

R = {(blue, France), (blue,Sweden,), (red, France), (red, Japan),

(white, France), (white,Japan), (yellow, Sweden)}

2. A = {1,2,3,4,5}, B = {2,3,4,5}
define relation R by:

(a,b)eR if and only if a>b for a eA, b eB

then:

R = {(3,2),(4,2),(4,3),(5,2),(5,3),(5,4)}

The terminologyand notationfor relations is as follows:

If an ordered pair (a,b)e R, we can also write aRb

Since R c A x B, R is said to bea relationfromA to B.

1h

v>

w*
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Notice that in the second example, not all valuesofA or of B

appeared within the relation set.

Ifwe considerthesubsetofeachofA and B for which values

appear as the left and right respectively of ordered pairs in R:

V = {a eA\\(a,b) e R for some beB} = {3,4,5}
W =

{beB\\(a,b)eR for some ae A}
= {2,3,4}

Vis called the domain of R and Wis called the range of R.

Mf In other texts, you may

Jf ij% meet the words 'image'

and 'codomain'.

The image of a binary relation

(or function) is the set of values
appearingas the right-side values

in the ordered pairs; the definition

we have used for 'range' W.

The set from which the image
is drawn (8 in the example) is

referred to as the 'codomain', but

you should be aware that in some

texts, the working definitions of

'range' and 'codomain' can vary

A B

KEY POINT 3.3

+4.

A relation R is a set of orderedpairs:JJcAxB for some

sets A and B.

The domain of R is the set VcA containing all elements
ofA occurring as the first component of an elementofR.

TherangeofR is the set WcB containing all elementsof
B occurringasthesecondcomponent of an element of R.

)

Frequently
we shall encounter cases where sets A and B are the

same; that is, R cz A x A. In this case,we describeR as a relation

'in A', rather than 'from A to A'.
y

-^ * orked example 3.3

Relation R is defined in Z+ by R =
{(a,b) \\a3+b2< 20J.

List all elementsof R, and determine its range and domain.

List the elements methodically* K =
{(l>l)>(l>2)>(l>3)>(l>4)f(2>l)>(2>2)>(2>3)}

Domain of K is {1,2}

Range of K is {1,2,3,4}

^S^^c, ..
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orked example 3.4

A =
{3,4,5},B

=
{8,9,10,11,12,13}.

A relation R from A to B exists where aRb if and
only

if
|
a - b | is a multipleof 5.

List all elements of R, and determine its rangeand domain.

List the elements methodically* K =
{(3,6), (3,13),(4,9),(5,10)}

Domain of K is {3,4,5}

Range of K is {6,9,10,13}

*
**

We use modular

addition every day
when consideringtime.

Imagine a standard

(analogue) clock-face:
Four o'clock plus 7 hours gives
eleven o'clock(4 + 7 = 11).
However, eleven o'clockplus 7

hours gives six o'clock (11 + 7 =

6). When considering hours of the

day, we work in modulo 12 (or 24).

The relation in Workedexample3.4isonetowhich we shall be

returning frequently in the comingsections,and is referred to as

congruence modulo (or mod)5.An alternative way of looking
at this is that any two numbers which are congruent (mod 5)
will have the same remainder when divided by 5.

KEY POINT 3.4

Two values x,y e Z aresaidto becongruent (mod n) if

and only if the differencebetweenx and y is a multiple of

n. We write x =
y(mod n) to indicate that x is congruent

toy (mod n).

The set ofpossiblevalues (mod n) is typically denoted

Z\342\200\236={0,1,2,..., w-1}.

orked example 3.5

Which of the followingstatementsaretrue?

(a) 13 = 7 (mod 3) (b) 21= 6 (mod9)

x =
y (mod n)<=> n divides |x

-
y\\

*

(c) 3 = 23 (mod 5)

(a) True: 13-7 = 6 = 2x3

(b) False:21- 6 = 15, not a multiple of 9

(c) True: 3-23 = -20 = -4x5

<i-

v>

w*

)

y

EXAM HIM
Noticethat it does not matter whether the difference is a
positive or negative multiple of n.

,jvA2 Topic 8 -
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Classifying relations

Considerthree relations R, S and T over Z, givenby:

xi?y whenever x \342\200\224
y (mod 5)

xSy whenever x-\\-y

xTy whenever x2< (y +1)
As in chapter 2 of this option, we can

classify
some common

properties of relations, and weshallusethesethree examples.

*>-

Exercise 3B

Statethe domainand range of:

(a) (i) {(0,0),(1,0),(1,1),(2,2),(3,4)}

(ii) {(3,5),(4,l),(6,3),(8,l)}
(b) (i) {(x,y)eZ2\\x

= 2y + l,0<y<4\\ 1fL
(ii) {{a,b)eZ2\\a2-2a= b,b<6}

(c) (i) R a {1,2,3,4}x{2,3,4,5,6} where1
^ xRy <^>

|
x2 -

61<
y

*
(ii) R<^{a,b,c,d,e,f}x{big,bad,ugly,wolf] where

xRy ^> letter xappearsin word y

2. List the elements of the followingrelationsR from A to B where
A =

{1,2,3,4},B
=

{1,3,5,7,9,11}:

(a) (i) xRy\302\2433 x =
y(mod4) ^J\\

^
V (ii) xRy<t3x

= y + l(mod5)
^

Yi

(b) (i) xRy <^> (x
- yf = (x+yf (mod 18)

(ii) xRy <^> x2 = y2 + l(mod 6) , -5

)

We saw in Worked example 3.5 that if x = y(mod5) then x-y must

be a multipleof 5.Since0 isa multiple of 5, it must always be true
that x - x(mod 5), so

xRx is true for all x f

We know that x = 1- x can never be true for an integerx,so

xSx is never true

For all non-negative integers,x2< (x+1), but the reverse is true for

negative integers,so 1

xTx is sometimes true.

Reflexive relations

A relation R in a set A is termed reflexive if xRx for all xeA.

Note that we require that the domain of R must be the whole

of set A.

In ourexamples,R is reflexive, but neither S nor T is reflexive.

3Orderedpairs, relations and functions 43
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orked example 3.6

Which of the following relations are reflexive?

(a) RelationR in Z where xRy if and only ifx isa divisor ofy.

(b) Relation i? in Z where xRy
if and only if x < y.

(c) Relation R in N where R =
{(1,1),(1,3)(3,1),(3,3),(3,4),(4,3),(4,4)}.

(d) Relation R in a2 = b2 where xRy
if and only if | x

-
y |

< 1.

(e) Relation R in the set of all triangleswherexRy
if and only if x is similarto y.

(f) Relation R in the set of all human twins where xRy if and only if x is a siblingofy.

Checkthat the domain of R is the whole*
set and that for every xeA, xRx

(a) Reflexive; each value is its own divisor

(b) Not reflexive; x X x for any xeZ

(c) Not reflexive;the domain of K is not the

whole of N {however, K In {1, 3, 4} would

be a reflexive relation)

(d) Reflexive; | x
- x|= 0 <1for all x e R

(e) Reflexive; every triangle is self-similar

(f) Not reflexive;although the domain of K

is the whole set, no Individual is sibling to

him or herself

1h

v>

w*

+flc

Again,
consider R, S and T as given previously:

xRy <^x \342\200\224
y (mod 5)

xSy <^ x = 1-
y

xTy<^>x2<{y+\\)2

we notice that because R is onlyconcernedwith the difference

between x and y:

xRy whenever yRx

Similarly, we see that xSy means that x + y \342\200\2241, so:

xSy whenever ySx

However, weknow that:

xTy does not in general imply yTx

Symmetric relations

A relation R in a set A is symmetric if, for all x,y e A, xRy if

and only if yRx.

In otherwords, any pair of elements of A are related in either

direction or not at all.

y

it*
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Option: Sets, Relations and Groups

- Q,
y*\\k

hn
+ 0|..



C2- ^ *K* ' v

V /.

H

orkedexample3.7

Which of the following relations are symmetric?

(a) RelationR in Z where xity if and only ifx isa divisor ofy.

(b) Relation i? in Z where xRy
if and only if x < y.

(c) Relation R in N where R = {(1,1), (1,3),(3,1),(3,3),(3,4),(4,3),(4,4)}.

(d) Relation R in R where xRy
if and only if | x

-
y |

< 1.

(e) Relation R in the set of all triangleswherexRy
if and only if x is similarto y

(f) Relation R in the set of all human twins where xRy if and only if x is a siblingofy.

Either demonstrate that the symmetry*

property must always hold or find a

counter-example

(a) Not symmetric; for example, (1,2) e \302\243

since 1 is a divisor of 2. However, (2,1) g K

(b) Not symmetric; for example,(0,1)e \302\243

since 0 < 1. However, (1,0) \302\243K

(c) Symmetric. For every (x, y) e /\\, (y, x) e/\\

(d) Symmetric: |x-y| <1^>|y-x| <1
(e) Symmetric; if triangle x is similar to y

then y is similar to x
(f) Symmetric; if x is a sibling of y then y is

a sibling of x

v>

w*

+flc

If a relation is not symmetric,it isdescribedas non-symmetric.

If a relation in A never contains both (x,y) and {y,x) for any
distinct elements x,y e A, then it is described as anti-symmetric.
In Worked example 3.7, (b) is anti-symmetric.

Transitive relations

A relation R in a set A is transitive if, for all a, b,ce A, aRb

and bRc implies aRc.

orked example 3.8

Which of the following relations are transitive?

(a) RelationR in Z where xRy if and only ifx isa divisor ofy

(b) Relation Rin Z where xRy
if and only if x < y.

(c) Relation R =
{(l,3),(2,8),(3,4),(4,6)} where A = {1,2,3,4}.

(d) RelationR in R where xity if and only if |x -
y \\

< 1.

(e) Relation R in the set of all triangleswherexRy
if and only if x is similarto y

(f) Relation R in the set of all human twins where xRy if and only if x is a siblingofy.

y
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continued,

Either demonstrate that the

transitivity property must always

hold or find a counter-example

(a) Transitive; if x is a dlvleor ofyandyle a dlvleor

of z, it follows that x isa dlvleor of z

(b) Transitive; if x < y and y < z then x < z

(c) Not transitive; 1K5 and 3R4 but it is

not the case that 1K4, since (1, 4) <\302\243R

(d) Not transitive; for example, 1K2 and 2 K5 but

it is not the case that 1 K5 elnce
11

-
31

= 2 > 1

(e) Transitive; if x is similar to y and y is
similar to z, then x is similar to z

(f) Not transitive; consider twins x and y

xKy and yKx, but it is not true that xKx

1h

H
a.

+fl.

Empty relations

An empty relation R is defined as a relationwith no elements:

R = 0 (for example,i? in Q where xity whenever x2 = 2y2).

orked example 3.9

Which of the properties of reflexivity, symmetry and
transitivity apply to an empty relation R

in a non-empty setA?

Apply the definitions* K is not reflexive, since that property requires that (x,x) e K

for all x g A, and A is non-empty.
K is symmetric, since that property requiresthat (x,y)e K

whenever (y,x) e K. Since 0 containsno ordered pair whose

reversed pair is not preeent,the symmetry condition is satisfied.

K is transitive; as with symmetry, the transitivity property
makes a

requirement
based on elements preeent in the relation,

and with no such elements, transitivity holds.

In some texts, if R is an Mf
equivalence relation,

4fJ\302\245^

the notation x~Ryor

simply x~y is used
instead of xRy to denote 'x is

equivalent to y under relation /?'.

We shall not use this notation.

Equivalence relations

If a relation in a set A is reflexive, symmetric and transitive, it is
termed an equivalencerelationin A.

v>

w*

)

y

orked example3.10

For any n e Z+, show that congruence modulo n is an equivalencerelationonZ.

First, clearly define what is meant by*

congruence modulo n

Vet K be the relation 'congruent modulo n.

For x,y eZ, xKy <^> x - y = kn for soma k e Z

,jvA\302\243 Topic 8 - Option: Sets, Relations and Groups
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continued,

Apply the definitionsto demonstrate*
reflexivity, symmetry and transitivity

Vroof of reflexivity:

For all x e Z, x - x=0 = On

<=^> xKx for all x e Z
.'. \302\243is reflexive

Proof of symmetry:

Suppose x/\\y

^> x - y = /en for some k e Z

^> y - x= -/en,

^> yKx

\342\200\242\"\342\200\242\302\243is symmetric

Proof of transitivity:

Suppose xKy and yKz

^> x - y =
k^n

and y
- z =

kzn for some /c e Z

=>x-z = (k^+k2)nwhere k^+k2eZ

=\302\261>x-z = mn, where meZ

<^> xRz

:. K is transitive

K is an equivalence relation

Equivalence classes and partitions
We have established that congruence modulo n is always an

equivalencerelation.
Taking

n = 3, we can separate N into
three subsets:

A0
=

{0,3,6,9,12,...}
=

[3k \\ k e
N}

Ax = {1,4,7,10,13,...} =
{3fc

+ l | fceN}

A2 = {2,5,8,11,14,,...} = {3fc+2 | fceN}
Every

element in AQ is equivalent to every other elementin
AQ

under the relation; the same is
clearly

true for A1 and Ar

Notice that we could describe
AQ

as 'the set of all elements equal
to 0,modulo3',but equally 'the set of all elements equal to 9,
modulo3',or

any
other element in A . We use the notationx

([x] or |jc| in some texts) to indicatethesetofall elements

equivalent to element x.

Hence
A0 =6 = 3 = 6 = ...

Each of A0,A1 and A2 is termed an equivalence classunderthe
equivalence relation congruence modulo 3.

KEY POINT 3.5
i

An equivalence class x within a set A under an equivalence

relation R is the set of allelementsequivalent to x e A.

x = [y g A
| yRx]

A relation which is

reflexive, transitive and
anti-symmetric is called an

order relation.

Relations such as <, > on R are
called'total orders' because for

every distinct a, b either a <b or
b<a, whereas divisibility on Z+

[aRb<^b is an integer multiple of

a) is a 'partial order', and does
not have the totality property.

Investigate or deviseotherorder
relations.

^ We have now established

1 the concept of an

equivalence relation.

The most well known equivalence

relation is '='... but we have

used the equals sign many

times in building the concept of
equivalencerelation!

Doesthis circularity invalidate the

entire foundation of what we have

developed?

V\\\"
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The nature of an equivalencerelationmeansthat any set can be

partitioned by the equivalenceclassesofan equivalence relation,

since equivalence classes are mutually exclusive, and every
element of the set lieswithin an equivalence class.

orked example 3.11

Prove that the equivalence classes of an equivalence relation R in U partition U.

Define partition*

Prove disjoint
- use contradiction*

Prove exhaustive*

+flc

Subsets A^,A2,AZ),... partition U if

A, nAj=0 for / ^ j (the eete are disjoint)
and A,uA2uA5u... = [J

(every element In U is in one of the subsets)

Call the equivalence classes A^A^,...,

Suppose A; and Aj are not disjoint.
Then there is an element x e A,, n A-

I3y definition of equivalence classes,

x e A <=> A = *

xeAjt^ A
j

= x

.:A,=Aj
Hence the

equivalence
classes are disjoint, since any

overlap between two equivalence classes
implies they

are Identical.

K is an equivalence relation and therefore reflexive.

=> x/\\X for all xeU

=> For every x eU thereis an equivalence class x

such that xex
=>There is no element of U which doee not lie within

an equivalence class

:. A^kjAzkjA^kj...= U

.'. U is partitioned by the equivalence classes of \302\243

n-

v>

w*

)

Exercise 3C
1. State the domain and range of:

(a) (i) H =
{(0,1),(2,1),(3,2),(3,3)}

(ii) H = {(1,1),(2,2),(3,2),(4,-1)}

(b) (i) relationi? in {1,2,3,4} where xRy<^>x<y2

(ii) relationRin{1,2,3,4,5} wherexRy <^> x + y + 2<(x-y)

(c) (i) relationR in R where xRy <^>y - cosx

(ii) relationR in R where xi?y ^> 2x +
y

= x2

y

Topic 8 -
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2. For relation R defined by xRy <^>x -
y

> 2 list the elements of
the relationfor:

(a) R in {2,3,4,5,6}

(b) R in {-1,1,3,5,7}

3. For eachofthe
following relations, determine whether it is

reflexive, symmetricand transitive in {1,2,3,4}:

(a) (i) i? = {(l,2),(2,l),(2,2),(3,3),(4,4)}
(ii) R =

{(1,1),(1,3),(2,2),(3,4),(4,1)}

(b) (i) R defined by xRy <^> x + y - 5

(ii) R defined by xRy <^> x< y

2x2
(c) (i) R defined by xRy<^> eZ

y

(ii) R defined by xRy <^ \342\200\224
<y

x

4. For each of the followingrelationson subsetsof 17, determine

whether it is reflexive, symmetric and transitive in 17:

(a) R defmedbyARB^AAB*0

(b) R defined by ARB ^ n(A) = n(B)
(c) R defined by ARB^n(AnB)>n(A'nB')

(d) \302\243defined by A\302\243\302\243Â u\302\243' = L7

1h

v>

w*

+^c

5. Which of the following are equivalence relations?

(a) R defined on the set of 2-dimensional polygonswhere
aRb ^> a is similar to b.

(b) R defined on the set of national flags of the worldwhere
aRb <^ a and b have at least one colourin common.

(c) R defined on the set of residentsofa
country

where

aRb <^ a is a parent of childofb.

(d) R defined on the set of residentsof a country where
aRb ^> a is a blood relative of b.

(e) R defined on the set of residents of a country where
aRb <^ a has the same family name as b.

(f) R defined on the residents of a country whereaRb ^> a

has at least as many siblingsas b.

)

y
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Let S =
{(*>y) \\x,y

e
Rj

and let (a,b),(c,d) g S.Definerelation
0 onS as follows:

(a,&) 0 (c,d) <=> a2 + fo2 = c2 + d2

(a) Show that 0 is an equivalence relation.

(b) Find allorderedpairs(x,y) where (x,y) 0 (3,4).

(c) Describethepartitioncreated
by

0 on

the (x,y) plane. [7 marks]

Leta,bg Z+ and define aRb <^>a2 -b2 (mod3).

(a) Showthat R is an equivalence relation.

(b) Find all the equivalence classes. [10 marks]

Two relations, M and N, aredefined on R by:

xMy <^\\x\\<\\y\\

xNy <^ x2 + 6y =
y2

+ 6x

(a) Determine whether M is an equivalencerelation.

(b) Prove that N is an equivalence relation.

(c) Determinethe equivalence classes of AT.

(d) Find the equivalenceclass
containing

only one element. [12 marks]

Relation R in a non-empty set A is symmetric and transitive,

and its domain is the entirety of A. Prove or disprovethat R

must therefore be an equivalence relation. [6marks]

gj Functions
You should remember from the core syllabus that a function/

from set A to set Bisa relationfrom A to B, with the restriction
that for each aeA there is at most one beB such that (a,b) e f.
That is to

say,
a function cannot ever be bne-to-many.

KEY POINT 3.6

For any function/

(afb and afc)<^>b-c

I 9^\\ \342\200\242

A B

Relation: One to Many

A B

Function: Each to One

Topic 8 - Option:Sets,Relations and Groups
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If (a,b) g / then b is uniquely defined as the onlyelement
related

by/from
a. We can therefore write b = f(a) without

ambiguity:

KEY POINT 3.7

I

If/is a function from A to \302\243then the following notations

are equivalent in meaning:

(a,b)ef

afb

/(*)
= *

Also, instead of the cumbersomedescription/is a function

from set A to set \302\243'we write, more briefly:/: A \342\200\224>B.

H

+\302\253.

orked example 3.12

Determine whether relation R is a function:

(a) R is a relation in Z: ai?fc <=> a2 \342\200\224b2

(b) \302\243is a relation in IR+ : aRb <^>a2 = b2-\\

(c) \302\243is a relation from {1,2,3,4} to {5,6,7,8};R =
{(l,5),(2,7),(3,6),(4,5)}

To check whether a relation is a function,
\342\200\242

determine whether the relation is ever

'one-to-many'

(a) K is not a function:

3oth (1,1)and (1,-1)e R, so K is a

one-to-many relation,not a function.

(b) K is a function:

Suppose a/\\b and a/\\C.

=> b2-1 = c2-1
=> b2 = c2

=> h = H
b,ceR+, so|b|= b and |c|

= c
.\\ b = c

/. ^ is a function as it is not one-to-many.

(c) K is a many-to-one function:

f (1)= f
(4)

= 5,f (2) = 7,f (3) = 6.

)

4o

y

Domain, codomain and range

We have already defined the relation R from A to \302\243as a subset

of A x B.

We defined the domain of R as the subsetVcA, theset
ofelements which appear as the left part of at least one

element of R:

V = {a g A| there exists kB suchthat
(a,b)eR}

See Key point 3.3

^u, for definitions of ^u,
^^ domain and range^^

for relations.
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We defined the rangeofR as the subset WcB, the set of
elementswhich appearasthe

right part of at least one element
ofR:

W =
{bgB| there exists aeA such that

(a>b)eR}

B is called the codomain, the supersetcontainingtherange.
Since a function is a type of relation,themeaningofthe terms
domain and range are unchanged, but it is common to further
requirethat a function /: A \342\200\224\302\273B has no unattributed elements

of A. Fromthis pointon,we shall therefore use the convention
that the domain of a function f :A^>B isA and cannot be a

proper subset of A.

KEY POINT 3.8

For a function /: A \342\200\224\302\273B

The domain of/is A

The codomain of/is B

Therangeof/is {/(fl)|<?
e A]cB

v>

w*

Range

+flc

Domain Codomain

Function: Domain, Codomain and Range

For example:/is a function in Z such that

/(a)=|a| for all a eZ.

Thedomainof/is Z.
The codomain of/is Z.

The range of/is N.

You may encounter a function referred to as a mappingor
transformation because it directs each element in the domain to
a correspondingelementin the range.

y
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orked example 3.13

/is a function from [a,b,c,d] to {u,v,w,x,y,z}.
f =

{(a,v),(b,y),(c,v),(d,xj\\.

State the domain, codomain and range of/

Domain is the set of left values*

in the ordered pairs

Codomain is the supersetof*
right-hand values

Range is the set of right values*

in the ordered pairs

Domain is \\a,b,c,d\\

Codomain is {u,v,w,x,y,z)

Range is {v,x,y}

Classifyingfunctions
A function for which each element of the rangecorrespondsto
exactly

one element of the domain is describedas 'one-to-one'
or

injective,
and referred to as an injection.

KEY POINT 3.9

For an injective function/:

f(a1) =
f(o2)<^>a1

= o2

Range

Domain Codomain

Injection:One-to-One

You may recall from the core syllabus that a function/which is

continuous on a singleintervaldomainwill be injective as long
as it has f'(x) > 0 or f'(x) <0

throughout
the domain; this

is sufficient to prove injectivity,
but notice that it is harder to

determine
injectivity

for a non-continuous function.
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/'(a;)> 0 at all points: One-to-One Turning curve: Many-to-One

f{x) = l-a? * f(x)
= l + 2

The graph of an

injective
function

that is, no horizontal

line from the

codomain
crosses

the graph morethan

once.

On the graph
of a

selective Kmction,

evlry
horizontal

line

from the codomain

crossesthe graphat

leastonce.

x < 0 x > 0

l-a

/'(x) > 0 and f(x) < 0 f(x) > 0 throughout
/ is injective / is not injective

A function for which the range is exactlyequalto thecodomain
isdescribed as surjective and referred to as a surjection. A

surjection/from A to B is also said to bea function onto B.

KEY POINT 3.10

For a surjectivefunction/fromA onto B,

for every beB, there exists aeA such that f(a)
\342\200\224b.

Range

<i-

v>

w*

y

Domain Codomain

Surjection: Range = Codomain
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A function which is both surjective and injectiveis describedas
bijective

and called a bijection.

KEY POINT 3.11

For a bijective function/from A to B,

for every beB, there existsa uniqueaeA such that / (a)
= b.

Range

On the graph
of a

biiective function,

every horizontal^
from the codoma.n

crosses the graph
exactly

once.

Domain Codomain

Bijection: Injection and Surjection

+fl.

orked example3.14

For each of the following functions, state whether it is an injection,surjectionorbijection.

(a) /is a function from A =
{1,2,3,4} to B = {5,6,7,8,9}: f(x) = x+4

(b) /: K+ -\302\273E+, given by / (x) = jx

(c) /: E \342\200\224>R, given by/={(x,X2)|xG]R}

Test the properties of injection and*

surjection

(a) Suppose f[a) = f(b)
^>a + 4 = kP + 4

^> a = b

[.*.
f is Injective

There is no aeA such that f (a) = 9g^
/. f is not surjective, and so not bijective.

(b) Suppose f(a)
= f{b)

<^> a = b

.'. f is Injective
Each

positive
real value is the square root

of a positive real value.

/. f is surjective

\342\200\242\"\342\200\242f is bijective

^3^%c ,
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(c) Suppose f(#)
= f(b)

<=>*r :F
^> a = \302\261b

:.f\\e not Injective, eo not bijective
There le no a e R such that a2 <0

.*. All negative real values lie outside the

range of f.

.'. f is not surjective

Inverse functions

If function f :A^B is bijective,then every element of B

corresponds uniquely to an elementofA. We could then define

a relation g :B \342\200\224>A as:

g
=

[{b,a)\\{o,b)ef]

Because/is injective,g must be a function (/ is one-to-one so
g cannotbe

one-to-many).

Because/is a function, g must be injective.

Because/hasdomainA, the range of g must be A, sog is
surjective.
Henceg must also be a bijection.

We have:

f(a) = b<*a =
g(b)

g is called the inverse function of/, and (as is familiar) is

commonly written f~l.

Noticethat in establishing /_1,/must be a bijection; an inverse
to

any
function other than a bijection will not be a well-defined

function.

KEY POINT 3.12

For a bijective function /: A \342\200\224\302\273B, we define the inverse

function f~l: \302\243-\302\273A by:

/(a)
= &<=>/-*(&) = a

The inverseof a bijectionis itselfabijectionand a non-

bijective function has no well-definedinverse.

We are already familiar with an algebraic method of

determiningf~l from/:
\342\200\242for an arbitrary element x of the domain,define y

\342\200\224
f(x)

\342\200\242
rearrange y

\342\200\224
f(x) algebraically to make x the subject

\342\200\242
finally restate x as f~l (y).

<i-

v>

w*

y
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If a bijection/is givenas a setoforderedpairs, f~l may be

given similarly simply by reversingtheorderwithin each pair.

orked example 3.15

For eachbijectivefunction/ give
the inverse function f~l.

(a) / = {(1,5),(2,8),(3,4),(4,6)}from A =
{1,2,3,4} to B = {4,5,6,8}

(b) /:R->R where f(x)
= 5-x

(c) f:R+^R+ wheref =
{(x,x3+l)\\xeR\\

To find the inverse of a function given as a*

set of ordered pairs, reversethe order of

each pair

To find the inverse of a function given by*

formula, let y = {[x) and rearrangeto

find x in terms of y

To find the inverse of a function given by*

formula, let y = f (x) and rearrangeto

find x in terms of y

(a) f-1 =
{(4,3),(5,l),(6,4),(3,2)}

(b) Let y = f(x),x = f-\\y)
=> y

= 5-x

=> x = 5-y
^f-1(y) = 5-y

(c) Let y = f(x),x =
f-\\y)

=^> y = x5 + 1

=^> x5 = y -1

=>f-1(y) = ^y3i
^f-1 ={(y,^i)iyeM}

Compositionoffunctions
If we consider function /: A \342\200\224\302\273\302\243and g: B \342\200\224\302\273C, we see that by

applying/and then g,we shall ultimately map each element of A

to an element in C.

Taking the two functions together, we can describe a third,
compositefunction h:A^C where h (a) = g yf (a)J

for all aeA.

gof:A^C
f'-A^B g:B^C

\342\200\242 \302\273 II* ^LL I
*

*^\\^^^^ LUi Ph*

nt j^^ \342\200\242- \342\200\224I\342\200\224\342\200\224\342\200\224*\342\226\272\342\200\224\342\200\224\342\200\224
L^=\302\273

\342\200\242r^ I \342\200\242\"I I \342\200\242I

5 c

Composition of functions
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In line with common practice, we shall use the notation
g\302\260f to

indicate the composite function off followed by g, so that:

gof = {(a,c) \\aeA,b=f(a),c=
g(b)}

For the composite to be well-defined,we requirethat the range

off must be a subsetof thedomainofg,or there will be some

element f(a) = beB for which g(b) is not defined.

KEY POINT 3.13

For the composition of functions g\302\260f to be well-defined,

range of f c: domainofg.

With what we have learned from chapter 2 of this option,we

can consider composition as a binary operation on functions,

and this concept will be important in chapter4.We shall

assume that the restriction imposed in Key point 3.13ismet,so
that the composition is well-defined.

We first note that composition of functions will always be
associative;if we considerthecompositionofthree functions/,

g and h as paths mappingeachelementin the initial domain

to a destination in the final range, it will make no difference if
weperformgof in a combined step and then apply h, or if we
first apply/and then the combination h o g, as illustratedin the
diagrambelow:

<i-

v>

w*

+flc

((hog)of)(x) )

y

ho(gof)(x) =(hog)of(X)
However, composition of functions is not generally
commutative (as you

should already be aware). For example:

f^x) \342\200\224x2 and g(x)
= x + l

Then
f\302\260g{x)

=
(x + l)

whereas g o
/(*)

= x2 +1

Topic8 -
Option: Sets, Relations and Groups
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KEY POINT 3.14

Composition of functions is
always associative, but not

generally commutative.

Continuing through ourlistofpropertiesfor operations,

now consider the concept of an identity function and inverse
functions. You are already familiar with the simple function

f(x) = x,but now we should be a little more precise,and

consider the domain associated with that function.

The identity function for a set A is a bijection IA:A^> A for

which IA (a)
= a for all aeA:

IA =
|(a,a) \\ae A]

We can now make a further definition of inversefunction,in
terms of composition:

KEY POINT 3.15

. For a bijection/: A \342\200\224\302\273B , the function f~l :B^ A is

I such that:

/-1o/ = 7Aand/o/-i =
7B

Notice that this is a slightly more sophisticatedstatement
than the equivalent which you may have seen

previously;

/ o f~l (x) = x, unconcernedwith the difference between

identity functions over different domains.

Recall that, if/andgare both bijections, then both f~l and g~l

exist; the inverse of a compositefunction/ o
g is the composite

inverse function g~l o
/_1.

KEY POINT 3.16
i

For bijective functions f :A^>B and g :B \342\200\224>C

the inverse of composite function
g\302\260f

is given as:

Mf You may see, in other

Jf ij% texts, the identity function

in a set A denoted by lA

or idA. The International

Baccalaureate\302\256 does not have a

preferred notation, but we shall

use
lA.

If you need to use an

identity function in an

examination, you should define
it clearly.

Although
knowledge

of the identity

function
is not

specified
on the

^ ^

international
Baccalaureate\302\256

syllabus,
examiners

will expect you

to understand
the significance
of domain

to

the definition of

a function (as

illustrated
in the

difference between lA

and lBV

\\

orked example 3.16

&

Set A =
{2,4,6,8}, set B = {1,2,3,4} and set C={6,7,8,9,10}

X

f :A^>B is such that /(*) =
\342\200\224,g: B \342\200\224\302\273C is such that g(.x) = 11- x, and h- go f

(a) List the elementsof /z.

(b) List the elements in the range of h.

(c) Findft W-

(d) Find h~l{x) if it exists.

3Orderedpairs, relations and functions 59
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continued,

Rememberthat a function*

can be written as a set of

ordered pairs, see Key

point 3.7. Elements of the

composite function g
o f are

{\302\260.9(f(\302\260))}

Compose the functions*

algebraically and simplify

A function must be a bijection to*
have an inverse

(a)

f(x) = f g(x)= 11- x

h = gof:A->C

h =
{(2,10),(4,9),(6,5),(5,7)}

(b) Range
= {7,5,9,10}

(c) h(x)=g(f(x))

-4D

= 11-*
2

0 is not a surjectlon,elnceno element of 5 maps
to 6eC
.'. 0 has no Inverse

.'. h = 0 of has no Inverse.

Topic 8 - Option: Sets,Relations and Groups



Exercise 3D

1. For each of the
following

functions in R, determine the range:

(a) (i) /:xBi2 +Ax-9 (ii) /:xh^3cos2x-4

(b) (i) / = {(x+3,x2-2)|xgIR}^
(ii) /

=
{(x,eHcosx)|xeR}

2. A =
{1,2,3,4,5}, B = {6,7,8}, C = {6,7,8,9,10},

, D=
{-3,-2,-1,0,1}.

\\ Determine whether each of the following relationsis a function,
J and if so, classify as injective, surjective,bijectiveor noneof
1 these.

&

(a) (i) /from A to C:

(ii) /from A to B

(b) (i) /from A to D:

(ii) /from D to C:

(c) (i) /from C to A

(ii) /from D to B

(d) (i) /from C to D:

(ii) /from D to C:

/ =
{(1,6),(2,10),(3,7),(4,7),(5,9)}

/
=

{(l,6),(2,7),(3,8),(4,8),(5,7)}

/ = {(l,0),(2,-l),(2,-2),(4,0),(5,-3)}
/ =

{(-3,10),(-2,9),(-l,7),(0,6),(l,8)}

f{x)
= x-5

/(x) = |x+l|+6
xjy

<=> x = y2 + 2y + 7

yfx
<=> x = y2 + 2y + 7

w.

3. Foreach of the following functions, sketch a graph and use it to

show whether the function is injective,surjective,bijective or

none of these.

(a) /:[l,5]-\302\273[2,8],/(x)= x+2

(b) /:[0,3]-\302\273[1,10], f(x)
= x2+l

(c) /:[0,5]->[1,11], f(x) = x2-4x +6

(d) /: [2,4] ->[l,9], /(x) = 2x2-16x+17

4. Determine whether each of the following functions is bijective
and,ifso,find the inverse function.

(a) /: M^M givenby f(x)
= 2x3-l

(b) /: Z\\{0}^Z+ given by f(x)=4x\\X\\~X

+
\\X\\

5. For each of the following functions, find fog and go f and so
determinewhether/andg commute under composition.

(a) f{x)
= x-3,g(x) = 2x *

(b) f(x)
= x + 7,g(x) = 5-x '

2 \342\200\224x

(c) /(*)
=

4-5x,\302\243(x)
=

-^-

6. For a bijection/, we definefunctions h- f o
f~l

and g
= y_1 oy

where o is the standard composition of functions.

Prove or disprove:g isequalto h.
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Define the function /: M2 -^ W such that

/(*,;>) = (27-x,x +7).
(a) Show that/is injective.

(b) Show that/is surjective.

(c) Show that/has an inverse function
and find it. [12 marks]

Consider the following functions:

f:R+^R+ where f(x)
= x2-6x

g:W^W where g{xyy)- (x+y,3x-y)
h:R+xR+^R+xR+where h(x,y)

=
(2x + y9xy)

(a) Explainwhy/is not surjective.
(b) Explain why g has an inverse and find g~l.

(c) Determine, with reasons, whether gh is injectiveor
surj ective. [16 marks]

Letf(x)
= x2-4\\x-2\\-4.

(a) Thefunctiong is defined by

g:] -\302\260o,2] \342\200\224>R, where g{x)
\342\200\224

f(x).

Find the range of g and determinewhether it is an injection.

(b) The function h is defined
by

h : [0,<*>[-> [-12,oo[, where h(x) = f(x).
Showthat h has an inverse and find this inverse. [15marks]

Summary

In this chapter we introduced theconceptofordered pairs and the Cartesian product of two
sets.Thenwe consideredrelationsand finally functions as subsets of Cartesian products, under
specifiedrestrictions.

\342\200\242Cartesian product A x B is the setoforderedpairs[(a,b) \\ a e A, b e 2?}.
Two ordered pairs(a,b) and (c, d) are equal if and

only
if a = c and b-d.

\342\200\242Relation R between A and B is a subsetofA x B, defined either as a list or accordingto a

membership rule.

\342\200\242The domain of a relation R is the setofleft-sidevalues in the ordered pairs of R.

\342\200\242The range of a relation R is the setofright-sidevalues in the ordered pairs of R.

\342\200\242Two integers are congruent modulo n if they have the same remainder when divided by n; that

is, if x and y are congruent (mod \302\253),then x \342\200\224
y is a multiple of n.

\342\200\242A relation R on A (from A to A) is:

- reflexive if xRx for all x e A

- symmetric if
xRy <^ yRx for all xy y e A

- transitive if
(xRy and yRz) <^> xRz for all x, y z e A

- an equivalence relation if R is reflexive, symmetric and transitive.

Topic8 -
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The set of elementswhich are equivalent under an equivalence relation is called
an equivalence class.The equivalence class containing element a may be denoteda.

Equivalence classes for relation R in A partition A.

A function is a relation for which every elementof thedomainisrelatedto
exactly

one element

in the range.

The graph of a function passestheVerticalline'test.

A function from A to B has domain A, range CcB and codomain B.

A function for which every element of the rangeisrelatedfrom exactly one element in the

domain is
injective (1-to-l): f{ax)- f(a2)<^> ax \342\200\224

a2. This is referred to as an injection.

Thegraphof an injective function passes the 'horizontal line' test.

A function whose range is equal to its codomainis
surjective (onto): for every beB, there

exists aeA suchthat f(a)
= b. This is referredto as a surjection.

A function which is both injective and surjectiveis describedas
bijective

and called a bijection.

For a bijectivefunction/fromA to B, for every beB, there existsa uniqueaeA such that

Two functions/and g are equivalent if they have the same domain A and f(a) - g(a) for all

aeA.

The identity function for a domain A is given as IA:a\\-^a for all aeA.

Thecompositionof two functions/followed by g is written asgof:

gof(x) = g(f(x))
- For go f to be well defined, the rangeof/mustbea subset of the domain of g.
- Thedomainofgof isthe domain of/ the range ofgof is a subsetof the

range
of g.

- In general, functions are
always

associative not commutative: That is, fog is generallynot
thesameas go/.

Only a bijective function / has an inverse function f~l.

- The range of f~l isthedomainof/
- The domain of f~l is the range of/.

For /:A->B, /o/\"1=
IB and f~l o/ = IA.

Forbijectivefunctions f :A^>B and g: B \342\200\224>C, the inverse of the composite function g o / is

given as (g o
f)~l

=
(f~l)

o (g~l).

\\

\\rf

&
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Mixedexaminationpractice3

Relation R is defined in C by:

wi?z^>w3|z| =z3|w|

(a) Show that R is an equivalence relationon C.

(b) Draw the locus on the Argand plane of allvaluesin the
equivalence class of -i. [6 marks]

Relation D is definedin R \\ {1} by

xDyoxy -x + y.
Showthat D is a function in R \\ {1}. [6 marks]

Relation R is defined in Z+
by

xRy <^> x2 = y2 (modulo 10).

(a) Showthat R is an equivalence relation on Z+.

(b) Identify
the equivalence classes of R. [10 marks]

(a) Belowarethe graphs of the two functions /: R \342\200\224\302\273R and g : R \342\200\224\302\273R.

Determine, with reference to features of the graphs,whether the functions

are injective and/or surjective.
Given two functions h:X^>Y and k: Y \342\200\224>Z, show that:

(b) if both h and k are injective then so is the compositefunction k o h.

(c) if both /z and k are surjective then so is thecomposite
function koh. [13 marks]

64 Topic8 -
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Let S = {2, 4, 6, 8,10,12,14}. The relationR is defined

a R b if and only if a2 = b2 (modulo 6).

(a) Show that R is an equivalence relation.

(b) Find all the equivalence classes.

Consider the set Z x Z+.Let R be the relation defined

for (a,b) and (c,d) in
ZxZ+,(a,b)R(c,d)

if and only

where ab is theproductofthe two numbers a and b.

(a) Prove that R is an equivalence relation on Z x Z+.

(b) Show how R partitions Z x Z+, and describe the

equivalence classes.

Consider the
following

functions.

/: R+ -> R+ where/(x) = x2 + 3x + 2

^:MxK^lxIR where g fay) = (3x+ 2y, 2x + y)

fi:R+xRMR+xK+ where h fay) = (x+
y, xy)

(a) Explain why/is not surjective.

(b) Explainwhy g has an inverse, and find
g\"1.

(c) Determine, with reasons, whether h is

(i) injective;
(ii) surjective.

Let S = Z+ \\ {1}. The relation R is defined on S
by:

mRn <^ gcd(m,n) > 1, for m,neS.

(a) Show that R is reflexive.

(b) Show that R is symmetric.

on S such that for a,

[15

(\302\251IB Organization

by the following:

if ad = be,

be S,

marks]

2006)

[6 marks]

[16

(\302\251IB Organization

(c) Show, using a counter example,that R is not transitive.

The function /is defined
by:

/:R->R where /(x)
= l + ec

(a) Find the exact range, A, off.

(b) Explain why/is not an injection.

os2x

(c) Giving a reason, state whether or not/is a surjection.
The function g is now defined to be g :

[\342\200\224fc,fc]
\342\200\224>A, where g(x)

-

and k> 0.

(d) Find the maximum value of k for which g is an injection.
For this valueof k,

(e) find an expression for g~l (x)

(f) write down thedomainofg~l.

marks]

2006)

[11 marks]

esmx + l

[15 marks]

h
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J An operation * is defined on Q+ by:

min(x,y)
x*y =\342\200\2247\342\200\224x

max[x,y)

The function /: Q+x Q+ -> Q+ is given by:

f(x,y) = x*y

(a) The range, R, of/is given as R =
[q e Q \\ a < q < b].

Determine the valuesof a and b.

Thefunction fK:K^>R is
given by fK (x,y)

= x *
y where K a Z+ x Z+.

(b) ForK =
{(*>y) \\x< y,gcd(x,y)

=
l], show that /K

is a bijection. [12 marks]
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Groups and

subgroups

When we studied binary operations in chapter 2 of this option,
we encountered properties such as closure and associativity
whichwerecommonto

many operations. In this chapter we shall
concentrateonoperationswhich share some of those important
properties, even if the objectsthey

act on are completely different.

We know that an operation acts to combine two elementsofa set
(the operands) and form a resultant element. By linkinga set with

an operation in that set, and then placingcertainrequirements
upon the operation, we form a structure whichwecallagroup.
As with all the topics encountered in this option, grouptheory

is abstract; indeed, this is the sourceof its richness.In advanced

group theory, we can strip down a mathematicalprobleminto

its base algebraic structure, and by mappingthis to another,
moreaccessible structure, can produce elegant and simple
resultswhich aredifficult to find in the original context.

This chapter only
introduces group structure and elementary

group theory, but with a couple of fundamental results and
someillustrative examples, it should provide a sound basis for

further study in this field of mathematics.

In this chapter you
will learn:

\342\200\242about the definition

and structure of a

group
\342\200\242about cyclic groups

and generator
elements

\342\200\242about subgroups and

their orders

\342\200\242about functions which

map one group
to another which
preservestructure

(homomorphisms)

\342\200\242about bijective

homomorphisms

(isomorphisms)

\342\200\242about applied groups,

including groups
of symmetry and
permutation.

+flc

Group structure

Consider the binary operationofmultiplication over the set

S = {l,i,-l,-i}<=C.

In Section2Bof this option, we analysed the properties of the

operation on this small set using a Cayley table.

I
l

I
*

I
-1

I
-i

1

i

-1

-i

i

-1
-i
1

-1
-i
1
-i

-i
1

i

-1

We notice that:

\342\200\242the operation is closed over S
\342\200\242the identity of the operation (1) is an elementof S

\342\200\242since the identity appears in each row and column,the
inverse of every element of S is also in S.

Furthermore,we know that:

\342\200\242standard multiplication is an associative operation.

- Q,
y*\\k

hn

y

* >

I

M
<s

+ 0(.
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In Worked example
2.5 we proved that

<^[ the identity element <^[
of an operation is
unique.

Thesefour qualities, taken together, are the fundamental

requirements (axioms)for the structure called a group. We

would denote the
group

described above as

{S,x}

indicating both the set and the binary operation on it.

KEY POINT 4.1

1

For a non-empty set G and a binary operation* on G, we

say that {G,*} is a group if the
following properties hold.

Closure:

Associativity:

Identity:

Inverses:

Gis closedunder*

gi *gi e G for all gl9g2eG
* is associative in G

gl*{g2*g3) = {gl*g2)*g3fol*R
gl>g2>g3^G

Gmust contain the identity element of

operation *

There existseeG such that

e*\302\243
=

\302\243*e
=

\302\243forall\302\243eG

For each g e G there existsg~le Gsuch that

g*g~l
= g~l*g = e

Notice that we do not require commutativity as one of our
group

axioms. A group with a commutative operation is called
an Abelian group.

KEY POINT 4.2

An Abelian group {G,*} has the additional property:

1h

v>

w*

Commutativity: | gl * g2 = g2 *
gY for all gltg2 e G

+flc

In defining a group we are ^

just listing a set of rules 1'
that we assert as true.

More than ever, in this

abstract mathematics, are we
blurring the line between

'creating' mathematical reality
instead of discovering it?

Can we learn anything interesting

if we take axioms we might

normally consider to be false?

Is this sort of artificial rule-making
useful in other scientific contexts,
or is an approach of scientific

observation and experiment more

enlightening?

Sinceweknow that multiplication is a commutative operation,
we can

say
that {S,x} is an Abelian group.

Formally, Gis a set,whereas
{G,*}

is the group denoted by both
set and operation. However, once the operation is established,
it is standard to referto the

group
as G, and we shall adopt this

practicewhere it is not ambiguous.

EXAM HINT

It is always acceptable to assert associativitywithout proof for:

\342\200\242standard addition or multiplication in any subset of C
\342\200\242addition or multiplication modulo n in any subset of Z
\342\200\242

composition of functions

Associativity should be demonstrated for other operations

unless a question explicitly states that it may be assumed.

Topic 8 -
Option: Sets, Relations and Groups
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orked example 4.1

Showthat the set Z5 = {0,1,2,3,4} under \302\2515(addition modulo 5) forms a group. Determine
whetherornotthe group is Abelian.

Demonstrate that each of the*

group axioms holds; for a

small finite set, a Cayley
table is a useful tool for

illustration

The Cayley table for 05 in Z5:

\302\2515

0

1

2

3

4

0

0

1

2
3
4

1
1
2
3
4
0

2
2
3
4

0

1

3

3

4

0

1

2

4
4
0
1
2
3

Closure: The table demonstrates that Z5 is closedunder

the operation

Associativity follows from associativity of standard

addition in Z

Identity: 0 is the identity element; as seen in the table,

a\302\25650
=

0\302\2565a-a for all a e Z5

Inverses: The inverseof a is 5 \342\200\224afor a \342\200\2241,2,3,4, and the

identity is always self-inverse

.\302\253.{Z5,05} is a group

Since addition is commutative, the group is also Abelian, as

can be seen from the symmetry of the Cayley table

1h

v>

wr

+\302\253c

EXAM HINT

It is common practice to use the symbol Zn to denote

the set of equivalence classes{0,l,2,...,n-l} of integers

(modulo n), and this notation may be used without further

explanation in an examination paper.

-^ 4
forms a groupunder

Exercise 4A

Show that the set si, cis \342\200\224Lcis

I 13) y 3 )^

multiplication.

For each of the following,determinewhether the set, together
with the operation given, forms a group.Ifnot, identify

one of

the four axioms which is not valid.

(a) {0,1,2,3} under *, wherex*y = \\x-yI
(b) [q21q

g Q \\
{o}}

under multiplication

(c) {0,2,4,6} under addition (modulo8)

y
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(d) R under addition

(e) Q under multiplication

(f) [7n + 2 |n e Z}under * where x* y \342\200\224x + y + 5

S \342\200\224
{0,1,2,3,4,5} and operation * on S is givenby

x* y \342\200\224x + y
\342\200\224

4(modulo 6)

(a) Draw out the Cayleytable for S.

(b) Determine whether S forms a group under*. [7marks]

Let {G, *} be a group with elementg e Gsuch that g* g- g.

Show that g must be the identity element of the group. [5marks]

The following functions are defined on R \\ [0,1]:

i:x\\-^> x

d\\x\\-^\\ \342\200\224x

1
r:iH-

x
Show that, together with three other functions q, s and t, which
shouldbedetermined, these form a group under composition.
Draw out the

Cayley
table for the group. [9 marks]

Q ThesetS = {a,b,c,d} forms a group under each of two

operations,
o and *, as shown in the

following group tables.

o

a

b

c

d

a
a
b

c

d

b

b

c

d
a

c
c
d
a
b

d

d

a

b

c

*

a

b

c

d

a

b

b

d

c d

c

(a) Copy and complete the table for *.

Solvethe
following equations for x.

(b) (box)*c = d

(c) (a*(x\302\260byj*c
\342\200\224b [8 marks]

A group {G,*} contains
identity

e and two distinct non-identity
elements x and y.

Given that x * y \342\200\224
y2

* x, prove that x does not
commutewith y. [5 marks]

<i-

v>

w*

y

Topic 8 -
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Group properties and cyclic groups

Cancellation laws

Iftoldto solve the equation:

2xx=2x3

we cancel the factor of 2 to get:

x = 3

If we were constrained to only use multiplication in our

working, and to showall steps,we might write the following:

2xx=2x3

0.5x(2xx) = 0.5x(2x3)

(0.5x2)xx=
(0.5x2)x3

lxx=lx3

x = 3

This seemslaborious,but it is important to note that if we want

to solve that very simple equation using only multiplication, we

need to make two important assumptions:
\342\200\242

multiplication is associative; this allowed us to move the
brackets

\342\200\2421 x x = x, irrespective of the value of x

Further, in order to start theproblemat all, we needed to select
0.5 to multiply each sideoftheequation.Why

0.5? We know

that is the only value which when multiplied by 2 will yield 1,
and weneed1in order to apply our second assumption.

In the
language

of operations, 1 is the identity of multiplication,
and 0.5isthe inverse of 2 under multiplication.

Because a group must containinverses for each of its elements,
we can considerthe ideaofcancellation,though

in a non-

Abelian group care must be taken to distinguish between left-

cancellation and right-cancellation.

KEY POINT 4.3

Left-cancellation:

For a, b,ce{G,*}

Right-cancellation:

Fora,b,ce{G,*}

a*b= a*c<^>b = c

b*a = c*a<^>b = c

A proof of the left-cancellation principle follows the structure
given

in the algebraic problem above.

- c\302\273
r*i>r

Kn
+ 0(.
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Take group {G,*} with a,b,c e G.

Supposea*b =a*c.

^> a-1 *
(a

* b) = a-1*
(a

*
c) Inverses exist in G (group axiom)

<=>
(a-1

*
a)

* b = (a-1 *a)*c Associativity (group axiom)

<=> e*b = e*c a~l*a = e

<^> b-c Property of identity

Take care that

you
do not mix

he cancellations
Exceptin an Abehan

qroup,
\302\253>s not. .

generally
true that

a*b
= c*a<=>b

= c

See Exercise4A

question
5 for an

example of a non-

Abelian group-

Notice that in any proof regardinggroups,we should quote the

group property which justifieseachlogicalstep.
The cancellation prinicple can be used to establishan interesting
propertyofa

Cayley
table of a group. Look again at the Cayley

table from Worked example 4.1:

*
1
2

3

4

u

2
3
4
0

2
3
4
0
1

4
0
1
2

0
1
2

3

We can see that every row containsa singleinstanceofeach
member of the group, and the same is true for every column.

This 'Latin square' property of the table is commonto all
groups,finite or infinite, and therefore is a necessary(but not
sufficient) condition when checking that a set qualifiesas a

groupwith a given operation.

orked example 4.2

Prove that for a group {G,*}, each row of the
Cayley

table includes exactly one instance of each
elementofthegroup.

We first need to show that there are*

no repeated elements in any row. It

is difficult to show this directly, so try

proof by contradiction.

Having establishedno repeats,we*

must also show that each element
does appear (for an infinite group

we cannot simply use a counting

argument)

Suppose that in the row of element a, there isa

repeatedelement.

a*\\? = a*cfor some b,c eG with b^ c

But by the left-cancellation
principle,

a*b = a*c^>b = c
This contradicts the initial supposition

.\\ No row contains a repeated element.

We must show that every element g e G appears in

the row of element a in the Cayley table.

Topic 8 -
Option: Sets, Relations and Groups
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continued...

This means that there is an element*

be C such that ob = g. We can

guess what b is, or 'solvethe

equation7 to get b = cr]g. We need

to explain why be G.

a e G => a-1 g G

a~ ,0eG

Inversesexist in G

Closure

E3ut then the cell in the row of element a and the
column of element 0~1 *g will contain element

a* (a-1*g) (= a * #~1)*g
= 0 * (a-1 x- g) Associativity

=
\302\243*g a^or^ \342\200\224e

\342\200\224
0 Identity

.*. Every element 0 e G appears in the row of

element a in the Cayley table.

An equivalent set of arguments can be usedto
establish that each column must contain exactly
one instanceof each element of the group.

+flc

orked example 4.3

Establish whether the structures represented by the Cayleytablesbelowformagroup:

V

w

X

y

z

w

X

V

z

V

X

z

y

X

w

y

y

z

w

X

z

V

w

V

y

Check each of the properties of Latin0

square, closure, identity and inverse

first as these are the easiest to find a

counter-example

EXAM HINT
Checkassociativity only if the

other three axioms hold and
you have not identified the

group.

V

w

X

\\y

z

w

y

V

z

X

X

z

y

X

w

y

X

z

w

V

z

V

w

V

y

(a) Not a group
v does not appear in the column fory, so the

Latin square property is broken.

This cannot bea group.

(b) Not a group

The identity element must be v since

v * 0 = 0 * v = 0 for all 0 e G.

w*z = v but z*w^v.

Hence there is no element which is both left

and right Inverse to w.

This cannot be a
group,

as not every element

has an Inverseelement.

- c\302\273
r*i>r

Kn
+ 0(.

4 Groups and subgroups



**
^^P^^^

-^ 4

+

In bctf/z cases of Worked example4.3we found a reason that

the table could not representa group,
but it can be more

difficult
to be certain that a table doesrepresent a group;

just because we cant find a
flaw,

it is not safe to assert that

L^ there is none! L^

In Section 4E weshall look in detail at some standard small

group structures, which will allow us to be more confident

that a given table does representa group.

1
1 Order

fcj\\^ Topic 8 - Option: Sets, Relations and Groups

*>-

1ft

The order ofagroup{G,*}isthe number of elements in G,
written n(G).

A group with infinite order is called an infinite group.
A group with finite order is called a finite group.

We learned in Section 2B that for an associativeoperator*,
elementaeG and m,neZ,we write: \\

a*a*...*q as an i
v

n times

Then the following laws apply, familiar from the laws of

exponents:

am*an =am+n

(am)n = amn

However, only in an Abelian (commutative) group is it

necessarilytrue that:

[a*b)n
\342\200\224an*bn

because we would need to reorder theelementsfrom:

[a*b)n
-a*b*a*b*...*a*b

*

)

y

to:

an *bn \342\200\224a*a*...*#*b*b*...*b

n times n times i

r

and reordering is not always valid in non-Abeliangroups. \\

The order of an element aeG is thesmallest
integer

n > 1 such

that an = e.

If there is no such integern then element a is said to have

infinite order.

Notice that e is the
only

element with order 1.
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orked example 4.4

Prove that for a finite group {G,*},every elementhas finite order.

Proof by contradiction1

is once again a useful

approach.

Suppose for a group G with finite order N there is an element ag6
with infinite order.

Consider elements e,a,a2,a5 ,...,aN
There are N +1 elements in that list, and by closure all must be in (5,

which only contains N distinct elements.

It follows that at least two of them (call them ol and aj with / > j) must

be equal.
a''= aJ'

(a-/) 1=fl-J'e6 Inverses must exist in G

a' * a~j = aj * a~J'

=> a''\"-/ = e

Tft/s meane that a has finite order (no greater than / \342\200\224
j)

This contradicts our assumption; we can conclude that every
element in a finite group (5 has finite order.

In fact, we can make a more refinedobservation:Sincei and j

were both values between 0 and w, and the order of a was no
greaterthan i-j, we see that the order of an elementcannever

be greater than the order of its group.
If

you are asked to prove a property of a particular group,
remember

you
can use any of the properties of closure,

associativity, identity and inverses. These, together with any
restrictionsonthesetofelements, should always be sufficient.

We shall see in

Section 4C that, for a

yx^ finite group, the order y*^
^^ of each element must ^^

be a factor of the

order of the group.

)

+fle

orked example 4.5

Show that a group {G,*}which containsno elementsoforder greater than 2 must be Abelian.

Use given0

properties to

show that

ob= bo

For any a,b e G

a*bE:G (closure)
.\302\253.a2 =b2 ={a*b)

\342\200\224e (property of G)
=> (a*b)*(a*b) = e
=> a*b*a*b = e (associativity)
=> a*(a*b*a*b)*b = a*(e)*b
=> a2*b*a*b2=a*b (associativity)

=> e*b*a*e=a*b (property of G)
=> b*a = a*b

If:b*a = a*b for all a,beG then G is Abelian.

y

u

^^No..
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Cyclic groups

So far we have constructed groups starting from a set and a

binary operation, and then making sure that the requirements
of closure,identity,

inverses and associativity are met.

Now we shallstart with an operation, its identity element and a

singleelementof finite order, and then build a minimal group to
containit.

Suppose element a has order n - 5 under operation*.

We start with set {e,a\\; clearly this is notclosed,since a2 ^ e (or
a would have order 2) and a2 ^a (or a wouldbethe

identity
and

have order 1).

If we are to build a groupthen we require closure, so we have to

expand the setto include a2.

By similar argument, we must also includea3 and a4.

We now have a set S= {e,a,a2,a3,a4}.Isthis sufficient with * to

form a group?

Rememberingthat a has order 5, so a5 = e, and a6 -e^a-a

etc., we can draw out a
Cayley

table for our proposed group.

1h

v>

w*

+flc

e

a

a2

a3

a4

a

a2

a3

a4

e

a2

a3

a4

e

a

a3

a4

e

a
a2

a4

e

a

a2

a3

Certainly we canseethat we have a set which is closedunder*.

Since all elements are of the form ak, associativityis fulfilled.

The table is symmetrical and a Latin square,so inverses are also

satisfied; a and a4are an inversepair,asarea2 and a3.

In fact, {S,*} as shownin thetableis an Abelian group, of

order 5.

Because we have built the group by taking powers of a single
elementa,we call a a generator of the group,

We describe the group as a cyclic group because
by taking in

sequence e, a, a2,..., we cancyclethrough every element of the

set, returning to the start with a5 = e> a6 -a.

KEY POINT 4.4

For a group {G,*}, if there is an elementg e G such that

every element of G can be expressedin the form
\302\243

for

some keZ then the group is calleda cyclicgroup
and is

said to be generated byg,denotedas G = < g >.

y
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Extending this, we can seethat any group of order n which
contains an elementa of ordern is a cyclic group, generated by
a. Usinga similar

argument
as in Worked example 4.4, we know

that e,aya2,.. .,an_1 must all be distinct elements,and
by

closure

they must all be in the group.Therearen elements in that list,

so there can beno otherelements in the group; it must therefore
be cyclicandgeneratedby

a.

H

KEY POINT 4.5

For a finite a group
that the order of g ]

' G is a cyclicgroup
I

>
{G,*}

if there is an element g e G such

is the same as the order of G then:

andG= <g>

Note that the generating element is not unique;indeed,in the

above example, any of the elementsotherthan e would generate the

same group, sinceeachelementotherthan e has order 5, which is
the orderofthewholegroup.Forexample,ifwe take b = a2 then:

b2=a4

b3 -a6 -a

b4 = a8 = a3

b5 =al0=e

Hence{e,a,a2, a\\a4}
= {e,b,b2,b\\b4}; {S,*}= <a> = <a2>.

+\302\253,

orked example 4.6

Show that the set Z5 \\ {0}
=

{1,2,3,4} with \302\2565(multiplication modulo 5) is a cyclic group and
find the order of each element.

First, show that this is indeed a*

group. Demonstrate that each

of the group axioms holds; for a

small finite set, a Cayley table is a

useful tool for showing this

The Cayley table for \302\2565in Z5 \\ {0}:

1

2

3

4

2
4
1
3

3
1
4
2

4
3
2
1

Closure: The table demonstrates that Z5 \\ {0} is

closed under \302\2565

Associativity: follows from associativity of etandard

multiplication
in Z

Identity: 1 is the identity element; as seen in the table,

a \302\25651
= 1 \302\2565a

= a for all a e Z5 \\ {0}

Inverses: 2 and 3 form an inverse pair, 4 is self-inverse.

.\\{Z5\\{0},(8)5}isa
group.

4 Groups and subgroups 77
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n
a

continued...

To demonstrate that this is a cyclic*
group, it is sufficient to find an

element with order the same as the

group order, since such an element

must be a generator of the group

1 has order 1, since it is the identity

4 has order 2, e'mce it is self-inverse

22 = 4, 23 = 3, 24 = 1,so2 has order 4

3 is the inverseof 2, so also has order 4

Sincethe
group

can be generated by a single
element (2or3),it is cyclic.

The above example illustrates that not every elementof a cyclic
groupisnecessarilya generatorofthe group, although the

inverse of a generatorwill also be a generator. In fact, we can
show that for a generating element a of a finite group G, ak will

be a generatorof a cyclicgroupGif and only if k and n(G) are

coprime (have greatest common divisor equal to 1); seeExercise
4B question 6.

We can immediately deduce from this that all non-identity

elements of a group with prime ordermust be generators of that

group.

<i-

v>

wr

Exercise 4B

1. For each of the
following groups, find the order of element 1:

(a) {1,2,3,4,5,6}under multiplication (modulo 7)

(b) {0,1,2,3,4,5} under * where x* y = x + y \342\200\2242 (modulo 6)

(c) {l,i,-l,-i} under * where x*y
\342\200\224

\342\200\224\\xxxy

(d) Q\\{0} under x

(e) Z under +

+flc 2. Which of the following sets and operationsform
groups?

If they

form a cyclic group, list allgenerators:
(a) N under addition

(b) Q+ under multiplication

(c) {1,2,3,4,5}under multiplication modulo 6

(d) {0,1,2,3,4,5} under multiplicationmodulo6

(e) {0,1,2,3,4,5}
under addition modulo 6

(f) {1,2,3,4}undermultiplication modulo 5

(g) \\
\342\200\224

I a Jo g Z
f

under addition

(h)

(i)

a,beZ> under multiplication

4

fiA fx\\

. V .

x g Z5,y g Z7
> under * where

' u +
vy

+ x(modulo 5)
*

v + ux + y (modulo 7)v^y

Topic 8 -
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(a) Show that {1,3,7,9} forms a group under multiplication
(modulo10).Determine whether it is cyclic and if so,list

any generators.

(b) Show that {2,4,6,8} forms a group undermultiplication

(modulo 10). Determine whether it is cyclic and if so,list
any generators.

(c) Show that {1,5,7,11}forms a group undermultiplication

(modulo 12). Determine whether it is cyclic and if so,list
any generators.

Let S = {0, 1, 2, 3,4,5}with 06 (addition modulo 6).

(a) Find the orderof
(i) 4 (ii) 5

(b) Write down the inverseof4.
(c) Find x such that x

\302\2516
4 = 1. [7 marks]

Group Gcontainselementsa and b such that a3 = b3.Given that

xeG and x* b = a4,show that x = ab2. [5 marks]

Prove that in a group G, if an elementaeG has order n then a-1

must have order n. [4marks]

1h

v>

wr

Prove that, if a has finite order, <a> \342\200\224<a l> [4 marks]

Q A cyclic group G has order n and generatingelementa. Let k be

a positive integer smaller than n

(a) Provethat if k is a factor of n then a^ is not a generator of G.

(b) Supposethat gcd (k, n) \342\200\224d >1. By considering (ak)n/d show

that a* is not a generatorof G.

(c) Prove that if gcd (/c, n) = 1 then ak is a generator of G.

[8 marks]
)

+flc

Subgroups and cosets

We learned in chapter 2 of this option that if every element of a set
A is also a member of set B,wewriteAcB and say A is a subset of
B.

Similarly,
if every element of a group {G,*}is an elementof

group

{H,*}, we say that G is a subgroup ofH.

Caremust be taken however; not every subset of H forms a

subgroup,sincenot
every

subset will fulfil the group axioms of
closure,identity

and inverses.

Associativity is automatically inherited, sinceif a *
(b

*
c)

= (a *
b)

* c

for all a,b,ceH then thesameis
certainly

true for all elements in

GcH.

KEY POINT 4.6

For a group {H,*},the subsetGcH forms a subgroup

{G,*} as long as ee G and G fulfils the axioms of closure
and inversesfor a group.

- Q,v>i>r
hn
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orked example 4.7

Suppose {G,*} is a group and H is a non-emptysubsetofG.

Show that ifa*b~leH for all a,beH then H is a subgroupofG.

Demonstrate that each \342\200\242

of the four group axioms

holds, on the assumption

that ob-] g H

Suppose a *b~1 gH for all a,b eH

(1) ^>Fora e f-U * a-1 eH

=>\302\243eH (Definition of a~1)

.*. H contains the identity element

(1), (2) => For all beH,e*b?-'eH

=> For all beH, b''1 ehi (Definition of <?)

.\\ H contains inverses for all its elements

(1), (3) => For all a,beH,a* (b\"1)\"1
e H, but (b\"1)\"1

= b

=> For all a,b e H,a *beH

:. H is closed under *

Associativity is inherited from G.

Hence {H*} satisfies the four group axioms and is a group.

0)

(2)

(3)

'*-

v>

wr

The terminology for subgroups is thesameas for subsets; the

smallest subgroup contains only the
identity

element:
|{e}>*} >

while the largest subgroup of a group is itself.Thesearecalled

the 'trivial subgroups', and other subgroups are called'proper
subgroups'.
Ina question, you may be asked to find a proper subgroupofa
given group; with no other constraints, the easiestapproachisto
identify

a non-identity element with order less than the order of
the group,and generate a subgroup from it. For a finite group, if

there is no such elementthentherecannot be a proper subgroup.

+flc orked example 4.8

Find a proper subgroup of
{Z4,\302\2514},

addition modulo 4 in {0,1,2,3}.

Determine the group structure of the*

original group

To find a proper subgroup, look for*
an elementwith order less than the

order of the group, and use it to

generate a cyclic subgroup

TheCayley table for 04 in Z4:

0

1

2

3

1

2

3

0

2

3
0
1

3
0
1
2

0 hae order 1, since it is the identity

2 hae order 2, e'mce it is self-inverse

1 and 3 each have order 4

{{0,21,04},a cyclic group of order 2, is a proper
subgroupof

{Z4,04}.
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Just as associativity is inherited by a subgroup,so
commutativity

is always inherited:

If {H,*} is Abelian,then:

a * b = b * a for all a,b e H

=> a * b = b *a for all a,b e G cz H

=> {G,*} is also Abelian

However,it is possiblefor a non-Abelian group to have an
Abeliansubgroup;we know for example that cyclic subgroups
are

always Abelian, so any cyclic subgroup must be Abelian,

regardless of the nature of the parent group.

Cosets of a subgroup

H

+a.

orked example 4.9

Group H = {Z32,*},where * is addition modulo 32.

Prove that for the subsetG4
=

{0,4,8,12,16,20,24,28}, the multiples of 4 in H, is a subgroupof
H under addition modulo 32.

Demonstrate that each of*

the four group axioms holds
for the subset CA

Remember you do not need to#

show associativity since this is

inherited from the parent group,

but you should assert its validity

Identity:

The identity of H is the additive identity 0eG4
Closure:

For any multiples of 4, their sum (modulo 32) must

also be a
multiple

of 4

Inverses:

The identity 0 is self-inverse.

For each geG4\\ {0},g~1
= 32 - g

Inverses are preeentfor each element of G4

Associativity:
Arithmetic addition is associative

Hence {G4,*} satisfies the four group axioms

and is a subgroupof H.

Consider the subgroup G4 as definedin Worked example 4.9.

G4 = {0,4,8,12,16,20,24,28} = {4k \\k
e Z8}, the multiples of 4

between0 and 28.

We can see that this is a proper subgroup,asit is
clearly

not the

whole of H, but it does have a regular structure, taking every
fourth elementwithin Z32.

What relation to G4 has the setA = {1,5,9,13,17,21,25,29}?

Like G4, A has a regular structure,with any pair of elements

separated by a multipleof4.It
certainly

is not a subgroup of Z32
(it does not containthe

identity 0, nor is it closed under *).

4 Groups and subgroups

- Q,
y*\\k

hn
+ 0|..



(p. ^ *u*
3H 0+lT~~~\"~7--~^+... + o *_!

* \\

+ K

H

+^c

We could write A as:

A =
{l + 4k \\keZ8}

or couldrelate it to the elements and operation of G4 as:

A =
{l*\302\243|seG4}

or even:

A = 1*G4

Although this last notation feelsratherstrange,asit
suggests

we

are adding a value to G4 as a whole, rather than to eachelement
within it, it is the standard notation for sets like A, which are
called cosets.

We call A a coset of G4.To createit, we tookan element (in

this case, 1) of the parentgroup,
and applied it (with the group

operation) to eachelementofa subgroup G4 to form a new set.

Note that since addition is a commutative operation, it makes
no difference if we write:

A = {Ug\\geG4}

or:

A =
{g*l\\geG4}

but for non-commutative operations, as we shallsee,it makesa
difference whether our extra element is appliedonthe

right
or

the left of the elements of the subgroup.

KEY POINT 4.7

For a subgroup {G,*} of group {H,*},and for an element

aeH:

The set a * G =
{a

* g \\ g e G} is called the
left

coset ofG in

H, determined by a.

The set G *a \342\200\224
{g

* a \\ g e G} is called the
right

coset ofG in

H, determined by a.

We can see that there are in fact four cosets of G4 in H:

0*G4 =G4 ={0,4,8,12,16,20,24,28}

1*G4={1,5,9,13,17,21,25,29}
2*G4 ={2,6,10,14,18,22,26,30}

3*G4
= {3,7,11,15,19,23,27,31}

If we look at 4 * G4, we soon realise that it is in fact the same as
0 *

G4, and that each possible coset of G4 in H is equal to one of
the four listedabove.

Topic 8 -
Option: Sets, Relations and Groups
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We can see some properties of cosets illustrated
by

the example

of G4 in H, which we canprove more generally

Firstly, we see that the four cosetsof G4 in H are disjoint. We
can prove that this is always the case; we start

by supposing

there is an element common to two cosets,and show that for

this to be the case, the two cosets must be identical:

r Property 1

Left cosets of a subgroup G in H are disjoint.

Proof:

Suppose a*G andb*G are left cosets of Gin H, and that

elementceHlies in both.

cea*G and ceb*G
Thereareelements glyg2eG such that

c - a *
g\\ and c = b* g2 (definitionof cosets)

(right cancellation)

(definition of cosets)

(closure of G)

=>a*gl=b*g2
=>a=

b*g2*gil

But g2 *gf1 g G (closureof G)

.'. aeb*G

=> For anyg eG,a*g eb*G

=3>a*G^b*G

By
a symmetrical argument, b *G cz a * G

.'. a*G = b*G

Thus if two cosets intersect at all, they areequal.
Hence cosets are disjoint (non-identical cosets are completely
separate).

We can also observe that every element of the parentgroup
is

present in one of the cosets.

Property2

Every
element of H lies in one of the cosetsofG in H.

Proof:

For any element heH,h = h*e
(identity element)

Since e e G, it follows that heh*G

/. Any element h e H is an elementof left coset h * G.

These two properties, taken together,immediatelygive
us:

Property 3

Group H is partitioned by
the left cosets of any subgroup G

inH.

- Q,

You should make

SUre you can prove
each of these

properties.
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Remember from

Section 2B that a set
B ispartitionedinto

<^[
subsets AlyA2>... <^[
ff \302\243/zesubsets are

disjoint and their
total union is equal
toB.

The union of 0 * G4,1 *
G4,2

* G4 and 3 *
G4 was H itself. While

that may have seemed intuitively obvious in the example of H
and G4, we now know that it is true in every case.

Finally,
we could note that each of the cosetscontains the same

number of elements. Since they sharea commonstructure, this

is not surprising, and we can demonstratethat this is always true.

Since one of the cosetswill always be the subgroup itself, we can
bemoreprecise:

Property
4

Cosets of a subgroup G in H have size equal to the order of G.

a

Proof:

Suppose G has elements gv g2,..., gk.
Then for any element he H,

h*G =
{hg hgv ..., hgk}. All these elements are distinct:if

hgx
=

hg2

then we would haveg1=
g2 (by the cancellation principle). Hence

the coseth*G contains k elements, the same number as G.

1h

v>

wr

Although we can be confident in the given proof of Property 4 for a finite subgroup G,
it is less concrete if G is infinite. We used the argument of a one-to-one relationship between
distinct elements of the coset and distinct elements of the subgroup to establish they had the

same size.

With infinite sets, a one-to-one pairing implying equal 'size' becomes problematic, famously illustrated
in Hilbert's 'Grand Hotel'.

As long as an infinite set can be in some way ordered, we know that the set has the

same size as N. Thus Z+, Z and even Q can be shown to have the same size as N. However,
R cannotbeordered,and is thus in some way 'bigger'. You may wish to investigate the work
of Georg Cantor, one of the pioneers of set theory, who studied this concept of different types of
infinite or 'transfinite' numbers.

)

Exercise 4C
1. Group H =

{Z6,*} where * is addition modulo6.Find all subsets

of H which form subgroupsunder*.
y

-^ 4 2. F is the set of linear functions:

{f:x\\-^ax + b \\a,beR,a^0}

(a) Show that F forms a group undercompositionoffunctions.

(b) Show that G = {g: x \\-^ ax \\ae R\\{o}} forms a subgroup
ofF.

3. Show that {M,+} is a subgroup of {C,+} and describethe
appearanceon the Argand plane of a coset of {IR,+}in {C,+},
giving

an example of a coset.

&.
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4. Group Q = {Q\\{0},x},the
group

of non-zero rationals under

multiplication.

(a) Determinewhichofthe
following

sets forms a subgroup

ofQ:

(i) Q+ (ii) Z\\{0}
(iii) {2m\\meZ} (iv) Q\\{2m \\rneZ]

(b) For each of thesetsin (a) which do form subgroups of Q,

write down thecosetwith \\
\342\200\224> in Q.

1 3J

5. Find a proper subgroupof[lR\\{0},x|with two elements.

6. G8 = {0,8,16,24} is a subgroupof{Z32,*},where * is addition

modulo 32.

List the elementsofcosets:

(a) 3*G8

(b) G8*13

(c) 24 *G8

Consider the
group

G = {1, 3, 5, 7}under multiplication
modulo8.
(a) Show that H = {1, 3} is a propersubgroup

of G.

(b) Find the coset 5
\302\2568

H. [5 marks]

W is the set of 3-dimensionalvectors.

(a) Show that W forms a group under standard vector addition.

(b) Prove that G =

<V*

7 eW\\x + y = 2z forms a subgroup of W.

(c) Give a geometricinterpretationofG and of the

cosets of G in IR3. [8 marks]

For a group {H,*} with subgroup{G,*},show that coset

h * G = G if and
only

ifheG. [6 marks]

10.
J

Prove that any subgroup of a cyclicgroupmust also

be cyclic. [6 marks]

For an AbelianGroup{G,*},letHbe the subset of G

H = {aeG|a2=e}

(a) If a, b, e H show that (ab)2 = e.

(b) Hence,show that H is a subgroup of G. [6marks]

-SraV^a.
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Consider a group{G,*}.LetHbe the subset of G such that

H = {xg G|x * a = a * x for all a e G}
Showthat

{H, *} is a subgroup of {G,*}. [6marks]

(a) Show that G = {1,2,3,4,5,6} forms a groupunder*,where

x>tj/
= xXj/ (modulo 7).

(b) Find a subgroupHofGwhere
\302\253(H)

= 2.

(c) List the cosets of H in G. [8marks]

3 (a) Show that K =
<j 1,\342\200\224-\342\200\224,

\342\200\224-\342\200\224
\\

forms a subgroup of
2 2

J

M\\{0} under multiplication.

(b) List the elementsof thecoset2x K.

1h

[8 marks]

n

+a.

(a) Show that if {H, *} is a group and x,yeH then

For a subgroup {G,*} of group {H,*}, therearen distinct

left cosets. Elements a^ j a^ ? a^,..., ^n are drawn, each from a
different left coset of G in H.

(b) Showthat
{of1, a^2, %3,..., a~l} is a set of elements,each

from a different right coset of G in H. [10marks]

The elements of a group {G,*} are {e,a,b,b2,a*b,b*a], where

a2 -b3 -e.

(a) Prove that
[a

*
b) -b2 *a.

(b) Draw the
Cayley

table for G.

(c) Show that {e,a} is a subgroupofG.

(d) List the elements of the left coset(b*a)*{e,a\\.

(e) List the elements of the right coset{e,a}* b2. [12 marks]

v>

w*

)

You need to be able

to prove individual

cosetproperf.es

but

W.\302\253not be asked
^

reconstructan ent.re

proof
of Lagrange

s

theorem.

Lagrange's theorem

We have already seen in Section 4B that any element of a finite

group must have order no greater than that of the group itself.

We can refine this idea considerably in the following theorem,
namedafter the Italian-born mathematician Joseph Lagrange
(1736-1813).

KEY POINT 4.8

Lagrange's theorem

For any subgroup Gof a finite group H, n(G) is a divisor

ofn(H).

Theprooffollows immediately from the properties of cosets

given in the previoussection.

Y
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For a subgroup G of a finite group H:
thesizeofeach coset must be equal to n(G) (Property4)
thedisjointcosetspartition H (Property 3)

It follows that n[H) \342\200\224
kxn(G) where k e Z+ is the numberof

distinctcosets.

:.n{G)isa divisor of n(H).

We can immediately deducea numberofconsequences
(formally

called corollaries) from the theorem.

KEY POINT 4.9

I

I Corollary 1: For any finite group H, theorderof
any

element h e H must be a divisorof n(H).

Proof:For any heH,

<h> must be a subgroupofH (closureproperty
of groups)

=^ n < h > is a divisorofn(H) (Lagrange's theorem)

n<h>\342\200\224 order of h (property of cyclic generator)

/. orderofh e H is a divisor of n(H).

KEY POINT 4.10

Corollary 2: For any finite group H where n(H) is a

primep, H can have no proper subgroups.

Proof:

For any subgroupGcH,

n(G)
divides n[H)- p (Lagrange's theorem)

=>n(G)=1orp (property
of primes)

/. G = {e}or G=H,the trivial subgroups of H

=> H has nopropersubgroups.

KEY POINT 4.11

Corollary 3: For any finite group H where n(H) is

a primep, Hisa cyclic group and every non-identity
element of H is a generatorofH.

Proof:

For any heH,

<h> must be a subgroupofH (closureproperty
of groups)

H has no proper subgroups (Corollary2)

^</2>= je}or</z>=H

=3>h = e or <h>=H

=^ /z is either the identity or a generatorofH and H is cyclic.

- Q,v>i>r
hn
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Note that the converse of Lagrange's theorem doesnothold in

general; if n(H) has a divisor d it is notnecessarilytrue that H

has a subgroup of order d, unlessHis a cyclic group.

EXAM HINT

Proofs of thesecorollariesare examinable; make sure you
can prove them if required. If a question does not explicitly
require you to prove a corollary, you can simply quote any

of these three results in an answer as part of your reasoning.

orked example 4.10

Group {G, *} has order 14, and H is a non-trivial
subgroup

of G. Show that for any non-identity
elementheH, eitherh2=e orh7 = e.

We need to show that the#

order of h is either 2 or 7. The

order of an element is related
to the order of the group by

Lagrange's theorem

E3y Lagrange's theorem, the order of H must be a factor

of 14.
SinceH is a non-trivial subgroup, n(H) = 2 or7.

E3y a corollary to Lagrange's theorem, the orderof any

group element is a factor of the group order.

:.If n(H) = 2 then h2=eforheH

If h(H) = 7 then ft7 = e for any heH

Exercise 4D

1. GroupD3 is given by the following Cayley table:

Group D3 is defined

]^> in context in Section]^>
4E.

e
r
s
X

y

z

r

s

e

y
z

X

s

e

r

z

X

y

X

z

y

e

s

r

y
X

z

r

e

s

z

y
X

s

r

e

Find all subgroups of D3 of orders 1, 2, 3, 4, 5 and 6,or
demonstrate that none can exist.

2. Use Lagrange'stheoremto stateallpossibleorders of:

(a) subgroups of a group of order 18

(b) proper subgroups of a group of order 24.

3. Gisa finite group of order pq, where p and q are prime. What

are the possible orders of subgroupsof G?

<i-

v>

w*

y
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Operation * is defined onNbyx^y
= ^ +

JT (modulo 12).

Find a subset GcN with 3 < n(G)< 12such that {G,*} forms a

group and determine whetherGhas a subgroup

of order 3. [6 marks]

(a) Explain why the table below is a Latin square:
<i-

c
d
a

b

e

d

e

b

a

c

e
b

d

c

a

b

a

c

e
d

a
c
e
d
b

(b) Using Lagrange's theorem or otherwise, show that

the table is not a group table. [6marks]

H
The set G = {1,3,5,7} forms a group under<8>8, multiplication

(modulo 8).

(a) Draw out the
Cayley

table for this group.

(b) Use Lagrange'stheoremto show that the set H = G u {2,4,6}
cannotforma

group
under \302\2568. [9 marks]

v>

wr

{G,*} is a group of order15with identity element e.

There is an elementaeG such that a3 ^ e and a5 ^ e.
Use

Lagrange's
theorem to prove that {G,*} is a cyclicgroupwith

generator a. [6 marks]

+flc

Finite group Gcontainsdistinctelementsa and b and identity e,
such that:

a*b-a3 *b4

a4 *b3 -e

(a) Show that a2 - e

(b) Show that the order of G is a multipleof 6. [8marks]

Frequently encountered groups

It is usefulto be familiar with common examples of lower order

group structures,particularly
when explaining why two groups

are isomorphic.

Groups of order1
The only possible structure for a group of order 1is{e},and this

is, as previously mentioned, a trivial subgroup of every group.

Isomorphisms will

]^> be introduced in ]^>
Section 4G.

y
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Groups of order2, 3,5 and 7

As is true for every group with prime order (see Key point
4.11), these arecyclicgroups.Each has structure {e,a,a2,.. .,ap~1},
and every elementof the groupisa generator,by

a corollary to

Lagrange's theorem.

Groups of order 4

Considerthepossibleorders for the elements e (identity), a, b
andc:

e must have order 1, and is the onlyelementwhich can do so.

By a corollary to Lagrange'stheorem,every
element in the group

must have an order which divides the group order. If element

a has order4, then the group must be cyclic, and will have the

following structure, with b and cbeing equalto a2 and a3....

<i-

H r
a

r
<

a

b

c

e

mm
b

c

e

a

mm

e

a

b

e

a

a

a3

a

a2

a3

e

a2

a3

e

a

a3

e

a

a2

If there is no elementoforder4,then since every order must be

a factor of 4, all non-identity elementsmust have order 2. We

can construct a possibleCayley
table on this basis.

v>

w*

+flc

<H

Recall from Worked

example 4.5 that

if a group only has

elements of order

I or 2 it must be

Abelian.

F a
b

<

a

e

mm
b

e

mm

e

We can fill in the details as above on the basis that e is the
identity,

and each of the three other elementsareto have order 2, so that

a2 \342\200\224b2 \342\200\224c2 \342\200\224e. Before we do so, however,wecannote that c must

be equal to a * b (also equal to b * a) for the group to be closed.

F
a

b

a*b

MM

a

e

mm
b

e

a*b

e

The remainder of the table can then be completedby
direct

calculation for each cell, or by observingtheneedfor the table

<^\\
to be a Latin square.As the table has symmetry through the lead

diagonalit isalsoAbelian, as we know must be the case for any

group whose elements are all order 1or2.

y
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^^1
a

[S &

^^B
a*b

a

a

e

a*b

b

b

b

a*b

e

a

a*b

a*b

b

a

e
This group structure, clearly distinct from that of the cyclic
groupoforder4

by
the order of its elements, is calledtheKlein

four-group.
These are the only two possible structures for groups of order4,
and hence any group of order 4 must have structure equivalent

to one or the other,determined
by analysis of the order of each

of the elements.

Groupsoforder6

Using
similar methods, we can show that there are

only
two

possible group structures of order 6:ThecyclicgroupC6,

consisting of [e, a, a2, a3, a4, a5},and thesmallestnon-Abelian

group, referred to as D3, with group table:

e
a

a2

b

b*a

a*b

a

a2

e

b*a

a*b

b

a2

e

a

a*b

b

b*a

b

a*b

b*a

e

a2

a

b*a

b

a*b

a

e

a2

a*b

b*a

b

a2

a

e

In the abovetable for D3, a and a2 have order 3, and b, b*a and

a*b have order 2.

Groups in context

Sofar we have mostly considered numerical groups, with
arithmetic ormodulararithmetic operations; however, group

theory is extremely versatile,and usedin a wide range of

contexts. We shall now lookat two specific contexts - geometric
transformationsand permutations.

Geometricaltransformations

Imagine a plane equilateral triangle ABC, whoseupperfaceis
shadedredand whose reverse face is shaded blue. We define

a symmetry on ABC as any transformationwhich maps the
triangle

such that each of its three edgesoverliesoneofthe

initial edge positions.

For clarity we will use the termsrotational and reflective

symmetries, but we shall interpret a reflective
symmetry

through a line in the plane as a 180\302\260rotation flipping the

triangle over about the
symmetry

line.

Although you.do
not

have to be able to

prove
that there can

only be tv/o group

structures
of order 4

or 6 we recommend

that 'ye*
work through

the supplementary
sheet'Groups

ot

order6'at the back

of this book on

pages
125-6-

1h

V>

W*

y

- Q,
y*\\k

hn
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You can see that there are rotational symmetrieswhereby
the

triangle is rotated about its centre O
by 120\302\260,240\302\260or 0\302\260/ 360\302\260.

There are also reflective symmetries; if we labelthevertex
positionsX, Y and Z then (OX), (OY) and (OZ)areall lines of

reflective symmetry

We can then determinethesetofall symmetries {e,r,s,x,y,z}:

e: rotation by 0\302\260(or, equivalently, 360\302\260)

r: rotation by 120\302\260

s: rotation by 240\302\260

x: reflection through (OX)

y: reflection through (OY)

z: reflection through (OZ)

If we then introducea
binary operator *, the composition of

transformations, we can
quickly

see that the six symmetries
form a group under*.Care must be taken in interpreting the
order of transformations;aswith functions, transformations are

resolved from right to left, so r* x means x followed by r.

Consider,for example, rotation r followed by reflection z,
written as z*r:

X X

Initially After rotation by 120\302\260(r) After r followed by z

The end positionis
exactly

the same as would result from a

singlereflectionabout OX. We can conclude that z * r = x.

Notice that by considering the reversesideofthe figure as being

a different colour, it is clearthat an odd number of reflections
will always leave the shapebluesideup, and an even number

will leave it red sideup.It is then evident that an even number

of reflectionswill always be equivalent to a rotation, while
any

odd number of reflections together with any rotations must be
equivalent to one single reflection.

1h

v>

w*

y

W

e
r
s
X

y

z

r

s

e

y
z

X

s

e

r

z

X

y

X

z

y

e

s

r

y
X

z

r

e

s

z

y
X

s

r

e
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Checking
the four axioms:

Closure: Every symmetry composedwith another

symmetry gives a member of the set,as canbe
seen from the Cayley table above

Identity: Clearlytheelemente,rotation by 0\302\260,is the

identity transformation.

Inverses: As seen in the table,eachelement has an inverse;

the reflections are self-inverseand the two

rotations (120\302\260and 240\302\260)form an inverse pair.

Associativity: If weconsiderthesetofvertex locations {X, Y, Z},

we can interpret each of the symmetriesasa
bijectionfrom {X, Y, Z} to {X, Y, Z}, mapping

each vertex from its start position to its
destination.We can then argue that, as with

any set ofbijections,thesymmetriesmust be

associative under composition.

Hence the symmetriesof an equilateraltriangleunder
compositionform a group of order 6.

Analysis of order structureshows that it is not a cyclic group;as
seenonthe

Supplementary sheet, 'Groups of order 6': there is

only
one non-cyclic group structure of order 6.

We use the notation Dn, called the dihedral groupofordern,
for the group consisting of all symmetries of a regularplanar
n-gon.The above group is therefore called D3.

orked example 4.11

1h

V>

w*

+flc

Determine the group of symmetriesof a non-squarerectangleABCD and classify the

group structure.

Sketch a figure,define*
its symmetries and

their orders.

By analysis of the

order of the elements,
determine which of

the known groups

has that structure

y
A

A

D

B

$
r\\

X

w

x

C

Let a reflection through the x-axle be given ae x, reflection through
the y-axle be given ae y, rotation \\bO\302\260about the origin be given ae r.

If e le the identity transformation, then the set of symmetries is
{e,r,x,y}.
Clearly, each of the elements r, x and y le self-inverse.

=>this isa
group

of order A, all of whose non-identity elements

have order 2.
^ this is a Klein four-group.

)

y

- c\302\273
r*i>r

Kn
+ 0(.
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Permutations

Although we representedD3 geometrically as the symmetries of
a triangle,we couldequally well have considered the problem in
terms of the 6 possiblepermutationsofthelettersX, Y and Z.

Consider a notation where theresultofeachtransformation is

given by indicating the destination of each of theverticeswith

initial positions X, Y and Z.

n

e:(X^X,Y^Y,Z^Z) r =
(X^Y,Y^Z,Z^X) x = (X^>X,Y^Z,Z^Y)

X X

Permutation e Permutation r Permutation x

Eachpermutationis,in effect, a bijection on the set {X,Y, Z}.

In the notation of relations, we couldhave given r as the set of
ordered pairs {(X,Y),{Y,Z),(Z,X)},showing

that

+fle

r(X)
= Y

r(Y)
= Z

r(Z)
= X

This is clear,but writing it this way soon becomes unwieldyfor
permutationsoflargesets.A preferred option is to give each
ordered pairasa column,and to write the entire bijection as an

array:

fx
r \342\200\224

Y

Z

Z^

X

Similarly, we see:

e-
X Y Z\\

X Y Z
and x =

fX Y Z\\

[x
z y)

We shall only look at permutations on finite sets, but the

following principles apply equallywellto infinite sets.

y

U

rtSW

W
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KEY POINT 4.12

H

+a.

A permutation on set A is a bijectionA^A.

A permutation p:A^> A given by the set of

orderedpairsp =
^[al,bl),[a2,b2),...,(<an,bn)j,

where

}
= {&U&2,...,&\342\200\236}>

is usually shown as:

P =
' t*i Wo \342\200\242\342\200\242\342\200\242M. '

&L fo2 \"7

It is conventional and generally most useful if a permutationis
given

with the top row ordered. For example,thepermutationq

on {1,2,3,4} given by:

(l 3 4
2^|

q
=

{2
1 3 4J

would moreproperlybewritten:

(12
3 4^

* =
l2 4 1 V

Each form gives the same information, since each showsthe
sameordered pairs which define the bijection, but the secondis
frequently

easier to use.

Combining permutations

We can combinepermutationsjustaswe would compose any

bijections, always remembering that the order of permutations
within a composition is (asfor any function) resolved from

right to left. Thus p1*
p2, which we shall normally write more

simply
as px p2, means permutation p2 followed

by pv

To simplify a composition of permutations,trackthe destination

of each element as it passes through the multiple steps. Since

composition of functions is always associative,we
may

have

several permutations in a sequence, and canresolveallat once.

Permutation applied to

the roots of polynomial

equations lies at the heart
of Galois Theory. Using

Galois Theory, we can show that

roots to integer coefficient

polynomials of order 2, 3 and 4

can always be expressed using
only integers and radicals(square

roots, cube roots etc.). We can
also show that there are order 5

polynomials whose rootscannot
be expressed in this way.

v>

wr

orked example 4.12

p1p2 andp3 are permutations on set {1,2,3,4}:

Pi = (l 2 3 4
2 13 4

(l 2 3 4^|

P2 =
4 13 2

Expressp3p2p1as a single permutation.

Write the permutations out#

in order

P3P2P1 3 4 12

p3
=

(l 2 3 4\\

3 4 12

1 2 3 4V1 2 3 4
4 13 2

(12 3 4

2 13 4

y

- Q,
y*\\k

hn
+ 0|..
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continued...

To resolve, track each element*

in turn

We see that that under pu

1 moves to 2, which
moves under p2 back to

1, which moves under

p3to3
p3 p2 P]

3^1^2^1

p3p2pi
So 3 <- 1

p3p2pi

Similarly 2 <- 2

p3p2pi

1 <- 3

p3p2pi

Having determined the fate*

of every element, write the

permutation out in standard

format

+flc

Identity and inverse permutations
It should be clear that the identity permutation is the
identity bijection. For our example set {1,2,3,4},the identity
permutationis:

(\\ 2 3 4^1

12 3 4
e-

Also, we can see that to find an inverseto a permutationp, we

can simply swap the lower and upper linesofp, (reversing
the

direction of the mapping) and then sortthecolumns
by

the

upper element.

orked example 4.13

Permutationp on set{1,2,3,4,5}is
given by p

=
1 2 3 4 5}
4 3 2 5 1 Findp\"1.

Swap lower and upper rows#

of p, then reorder

p
-

4 3 2 5 1
12 3 4 5

Sorting to standard order.

f\\ 2 3 4 5^
r* =

5 3 2 14
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Decomposition of permutations

Consider
again

the three permutations given in

Worked example 4.12.Ratherthan list allelementsofthe
set

undergoing permutation, we could restrict ourselves to

giving only those which actually change, expressing the

changesas cycles.
Forexample:

Pi
=

2

1

4^

4

We see that elements 3 and 4 do not
actually undergo any change,

while 1 and 2 exchangeplaces.This is described as a 2-cycle or

transposition ofelements1and 2, and can alternatively be written:

A = (12)(3)(4)=(12)
which we read as the cycle: 1 \342\200\224>2, 2 \342\200\224>1, with all other

elements remaining unchanged.The 1-cyclesneednotbe
written, but you should always make sure you have checked the

fate of every element in the permutationset.

This is clearly a self-inverting permutation, with order 2;
performingthesameswap twice would take us back to where
we started.

p2 affects three elements:

P2 =
(l 2 3 4

4 13 2

We see that there is a cycle: 1\342\200\224>4, 4^2 and 2 \342\200\224>1. Element 3

is unaffected.

We can write this as a cycleof length3,where each element

is transformed to the one to its right,and the end element is

transformed to the first:

ft
= (142)

This is not self-inverting;(p2) = 1 2 3 4^1

2 4 3 1

However, [p2) = e,so
p3

has order 3.

KEY POINT 4.13

= (124).

Theorderofa permutationwhich can be expressed as a

single M-cycleis n.

Finally, p3 affects all four elements, but as a pairof2-cycles:
f\\ 2 3 4^

3 4 12P3
=

\\~ J

We could write this as:

p3
=

(l3)(24)

- C\302\273
r*i>r

Kn
+ 0(.
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Notethat this is different from the 4-cycle (1324);inp3,we

swap the first and third elements, and alsoswap the second

and fourth, so this is a combinationof two completely non-

interacting transpositions, and as such is self-inverting.
As well as being a briefer way of writing permutations,the
decomposedform is also more useful when assessing the order
ofapermutation.
KEY POINT 4.14

The order of a permutation is the1cm(least common

multiple) of the lengths of its decomposedindependent
| cycles.

Note that when using this method to determine order,thecycles
must be completely independent.

For example, q = (l3)(32) doesnot have order 2; the two cycles
interact, since

they
share the element 3. In fact, (l3)(32) = (321)

and so q has order 3.

1h

v>

w*

+flc

orked example 4.14

Determine the order of eachof the following permutations on the set {1,2,3,4,5}:
(l 2 3 4 5\\ (l 2 3 4 5\\ (l 2 3 4 5\\

2 14 3 5Pi =
v4

3 2 5 1
Pi =

i>3
=

Decompose the permutations, and find the*

least common multiple of the cycle lengths

Resolvep4 into a single permutation and then*

decompose that to establish its order

,15 2 4 3,
Pi =

Plp3

**Jt

P,
= (145)(23)

Theorderof p, is \\cm(2,5) = 6

p2=(12)(34)
The order of p2 is lcm(2,2) = 2

p3=(253)
The order of p3 is 3

(\\ 2 3 4 5^ = (1452)4 1 3 5 2 v ;

\342\226\272The order of p4 is 4.

)

y

EXAM HINT

The order of a composition of two permutations cannot

be calculated as a function of the orders of the two initial

permutations. First you must work out the composition as a
single permutation and then assess its order.

If you are given permutations in cyclenotationand asked to

compose them, you need not transform backinto the array to

do so.
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orked example4.15

p1andp2 are permutations on set {1,2,3,4,5}:

A = (123) p2
= (1325)

Express p2 p1 as a singlepermutation.

Write the permutations out in order0

To resolve this, track each element in turn,

completing a cycle when you return to an

element already encountered
Start with 1:

.\342\200\242

We see that that under the first cycle, 1

moves to 2, which moves under the second cycle to 5:

1^2^5

We now put 5 back in at the start (right side)

and see what happens. 5 is unaffected by the first cycle
and moves to 1 under the second. We have therefore

come full circle and can close off the cycle

We have not yet finished however, since we have not

investigated elements 2, 3 and 4.
Starting the next cycle with 2:

Under the first cycle, 2 moves to 3, which then moves

back to 2. Thus 2 is unchanged by the permutation. We

could write this as a 1-cycle (2), but would normally just

disregard it. Starting the next cycle with 3:

Under the first cycle, 3 moves to 4, which is then \342\200\242

unchanged. We now put 4 back in at the start

(right side):

.\342\200\242

4 moves to 1 under the first cycle, which moves to 3

under the second. We have therefore formed a second
2-cycle

We have now analysed all elements, so have finished.
Although you do not need to show working for

this sort of calculation, if you wish to do so as a
meansof making your answer easier for you to check,

the following would be appropriate:

p2p,
= (1325) (123)

(15

(15)

(34

(34)

- Q,
y*\\k

hn
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continued...

Write down the transformations, showing a*
break at the end of a cycle

Always start the next line within a cycle with

the output of the previous line

Read down the left hand column,
\342\200\242

separating each cycle

Cycle analysis:
1-\302\2732-\302\2735

5->1

2^2]

3->4~

4->1->3

P2P,=(15)(2)(34)= (15)(34)

'*-

H EXAM HINT

Although we read left-to-right within each cycle, we take
the cycles in sequence from right to left. Take care not to

get confused by this effect!

v>

w*

+flc

Exercise 4E

1. Permutations1

P
=

(a

lc

b c

d a

p and gofthe set {a,b,c,d,e\\ are given by:

d e\\
e b

/

(a) Find the order of:

(i)

(b) (i)

p

Find p~lq.

2. The following

P =

1 =

r \342\200\224

(1

I2

(\\

v3

f\\

v2

(is \342\200\224

5

2 3

5 3

2 3

1 2

2 3
1 4
2 3

2 4

q=

(ii)

(ii)

are permutations
4 5^1

4
!,

4
5^j

4 5;
4

5^j

3
5J

4 5^1

1 3J

(a) Find permutations:
(i) pr (ii) <J5

(b) Find the order of:

(i) P (ii) q

'a b c d e^

c b a e d

q

Find the order of p~lq.

ofthe set{1,2,3,4,5}:

(iii) r3 (iv) s2

(iii) r (iv) s

y
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(c) Find the order of:

(i) pr (ii) qs (iii) r3 (iv) s2

(d) Find permutations:

(i) p_1 (ii) (qr) (iii) s~3 (iv) p~lrp

3. Drawa squarewith vertices
(l,l),(-l,l),(-l,-l),(l,-l)

and label

the reflective symmetries.Usingr for a rotation of 90\302\260about the

origin, draw out the group table for D4.

Q P4 represents the group of allpermutationsof the four letters a,

b, c and d.

p g P4 is given by p =
^

(a) Write down the identity element of P4.

(b) Determinetheorderofp.
(c) It is given that q2 = p. Find q. [9marks]

[57]
A 2x2 x2 puzzle cube consistsof 8 blocks(A to H) around

a central pivoting device.Eachblockhas 3 external faces, as

shown.

Labels have been assigned to each face according to its block
and direction;thefacesonthebaseare E3,F3,G3 and H3, the

left side facesare A1,B1,F1 and Ex and the faces on the far side

are \302\2432,C2,G2 and F2.

Rotations of four blocks are possibleabout the three axes

connecting the centres of oppositefaces.
We define a single 90\302\260rotation of the upper layer through the
verticalaxisas rz

=
(Ax B2 Q D2)(A2Bx C2 D1)(A3 B3 C3 D3).

(a) Write down the full permutation of rx, a rotation through
90\302\260about the horizontal axis of the right four blocks,which

contains the cycle f Q D1H1G1).

(b) Calculate the permutation r~lr~lrxrz.

(c) Interpret what effect the manoeuvre r~lr~lrxrz has on the

positions of the 8 blocks.

(d) Use
your

answer to (c) to describe what the effect would be

of applying the manoeuvre twicein succession.

CO

B* c.

/ A3

A2

E2

(

\302\260'

D2

H2

Di

Ci

G, 4

4/

1h

v>

w*

y

Homomorphisms and kernels

Homomorphisms
We know that there is an underlying structure commonto all
groups (closure, inverses, identity and associativity) but that,

beyond these,groups
can vary greatly. We now look at functions

between groups.

- Q,
y*\\k

hn
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We could alternatively

write f{x) \342\200\224
using

&

the floor brackets
|_ J

which indicate 'round down to
the nearest integer7.

H
a

+flc

Consider the groups:

JA,*}
=

{Z8,\302\2518},
addition modulo 8

and

{B,o} =
{Z4,\302\2514},

addition modulo 4

Function /: A \342\200\224>B is given by:

/(*)=

\342\200\224xeven

2

x-1

2

f

xodd

B

Functiong: A \342\200\224>B is given by g (x) - x
(modulo 4)

A B

.jMp2 Topic 8 -
Option: Sets, Relations and Groups
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We can see that both functions/and g map allelementsin
A =

{0,1,2,3,4,5,6,7} to B = {0,1,2,3}as required.
Thereis,however, a property of g which makes it mathematically

far more interesting than/ We can illustrate the
property by

considering what happens when we applyeachfunction to the

following sum in A:

1*5

/(l*5) = /(6) = 3

and\302\243(l*5)
=

\302\243(6)
= 2

If we were to map theoriginalelements,priorto resolving
the

operation *:

/(l)
= 0,/(5) = 2

and then (since/(l) and /(5) are elements of B), applythe
operationofB:

/(l)o/(5)= Oo2 = 2

If we try the same with g, however: g (l)
= 1,g (5)=1

\302\243(l)o*(5)
= 10l = 2

It appears that if weapply/beforeresolving
the group operation,

we get a different result to applying/after the group operation,
but with g we reachedthesameend either way:

f *

11

*

rLO

Pi0

9

11

0

11

0

A B

We could check that this effect will always hold true
by testing

every possible pair of elements from A, but that would require
27 more calculations.Better

by far, we can use algebra to show
thegeneralcase:

S{x
* y)

- S \\(x
+ y) (modulo 8)J

= (x +
y) (modulo 4)

g (\342\226\240^)o^r(y)
= xfmodulo

4j0y
(modulo 4j

= (x + y) (modulo4j
Thus:

g{x*y)=g(x)og{y)

for allx,y e A.

- Q,
y*\\k

hn
+ 0|..
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Function g is called a homomorphism from A to \302\243,because it

'preserves operations'.

This quality, where the structuralrelationshipsbetween
elementsofthe domain group are preserved in the image
elementsof the

range group, makes homomorphisms

extraordinarily useful in group theory.

KEY POINT 4.15

A homomorphism from group {A,*}to group {\302\243,0}
is a

function /: A -\302\273B such that /(x *y) = f(x)of(y) for all

elements x,y eA.

Clearly g in the aboveexamplewas not a bijection, since A has

8 elementsand Bhas
only

4. In fact, a homomorphism need not
be injective or surjective; the only requirement is that it must

preserve operations. The definition of homomorphism implies
the

following readily proved properties, which we can observe
in theexample.
First, we note that the identity element in A was 0, and this was

mapped to the
identity

in B (also 0).

Property 1

If/is a grouphomomorphismfrom group {G,*\\
to group

{H,o} then the
identity

in G must be mapped to the

identity
in H:

Proof:

g*eG=gforallgeG

=>f{g*eG) = f(g)for3agsG

^f(g)of(eG) =f(g) for all g eG

^f{g)of{eG)
= f{g)^H for allgeG

(definition of eG)

(definition of

homomorphism)

(definitionof eH)

(left cancellation)

The inverse of 1 in A is 7. After applying the homomorphism,
the imagesoftheseelements are also inverses:

g(^)=g(7)=3=g(ir

Property 2

If/is a
group homomorphism from group {G,*} to group

JH,oj then the inverse of an element g e G must be
mappedto the inverse of the image of g:

11-

v>

w*

y
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Proof:

g * g~l
- g~l *g -

eG
for all g e G (definition of inverses)

^f{g-g-l) =f{g-l*g)=
f{eG)

= eH (Corollary 1)
for all g g G

^f{g)of{g~1)= f{g~1)of{g)
= ^H (definition of

for all g g G homomorphism)
=^ f {g~l)

~ / {g) for all ^ g G (uniqueness of inverses)

In fact, the homomorphism g preserved all powers, not just
inverses.

I Property 3

I If/ is a group homomorphism from group{G,*}to group

[H, 0} then the image of a power of an elementisthesame
' as the image of the element raised to that power:

I /(*\302\273)
=

/(*)\" for all seCneZ

Proof (byinduction):

The case n = 1 is true.

Assumetrue for case n-k: (1)

\\k

f(gk)
=

f(g)

Now:

f{gk+l) = f{g*gk) =f{g)of{gk) (definition of

homomorphism)

=> f{gk+1)
=

f{g)\302\253f{gf (by(D)

=> f(gk+1)=f(gf+1

.-. f(gn) = f (g)nfor all n e Z+ by induction. (2)
Thecasen = 0 is proved in Corollary 1 (3)
Since

g~n
-

(g~l)\\ the statement is also
(by (2))

proved for n g Z~:

f{g-\") =
f({g-l)n)

=
f{g-l)n

for aUneZ*

=>f[g-\")
=

(f[g)~1J
for aU\302\253eZ+ (CoroUary2)

=>f{g-n)
=

f{g)~\" forall\302\253eZ+ (4)

f{gn)
=

f{g)\" foraU \302\253eZ (by (2), (3), (4))

Property 4

If/is a grouphomomorphismfrom group {G,*} to group

{H,o} then the rangeof/willbe a subgroup of H:

{{f{g) \\g
e

G}><>}
is a subgroup of {H,o}.

v
o

-^jairNa.
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Proof:

Range of/contains the identity:

eH=f(ec)e{f{g)\\geG}

Closure follows from the definitionofhomomorphismand

the closure of G.

Inverses follow from Property 2 and thepresenceofinverses

in G.

Associativity is inherited from group H.

orked example4.16

Group {A,*}
is {0,1,2,3,4,5} under addition (modulo 6).

Group{B,x]is{l,-l}under multiplication.

Functions /and g map A to B and are defined by:

/(*H-ir
x =0,1,2

*(*)= '
1

[-1
x = 3,4,5

Showthat/is ahomomorphismfrom A to \302\243and that g is not.

We need to show that {\342\200\242

preserves operations

To show g is not a \302\253

homomorphism we only need

find one instance where

operations are not preserved
We can see that g(eA) = eB/ so

try a non-identity element

f(x*y) = f(x +
y(modulo 6))

/ y,\\x+y (modu\\o6)

=
(-l)x+y

(difference of an even power would have no effect)

fWxf(y)=(-irx(-i)y=(-ir
rience

f(x*y)=f(x)xf(y)
So f is a group homomorphism from A to 5

g{2*2)
= g{4) = -\\

3(2)X0(2)
= (-1)X(-1) = 1

rience 0 doeenot
preserve operatlone, and eo is not a

homomorphism
from A to 3.

Kernels

In Workedexample4.16,

Group {A,*}
is {0,1,2,3,4,5} under addition (modulo 6).

Group{\302\243>x}
is {l,-l} under multiplication.

Homomorphism /: A \342\200\224>B is given by f(x) =
(\342\200\224l)*

Topic 8 - Option: Sets, Relations and Groups
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**

^r^r^^^a

* \\

7 /

H

+s.

^~

v_

0^

4^

1 ^

5^

/ ^\342\204\242

1

1

\342\200\242^_

r i

- 1

^^

5

We can partition A according to the imageof eachelementin B,

as shown in the diagram above.

Elements0,2 and 4 of A map to the identityelementofB;this

subset is called the kernel of homomorphism/, and, aswe can
quickly see, these elements form a subgroup of A.

KEY POINT 4.16

For groups {G,*} and {H,o} and grouphomomorphism
/: A \342\200\224\302\273B, the kernel of/is defined as:

ker{f) = {geG\\f{g) =
eH}

ker(/) is a subgroup of (G,*}.

1-

1h

)

4o

y

M \302\253

\342\226\240?Sp**1*
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orked example 4.17

For groups {G,*} and {H,o} , prove that the kernel of a grouphomomorphismf :G^H isa

subgroup of G.

Define the kernel and*
use the definition of

a homomorphism to

demonstrate that all the

group axioms are met

ker(f) = {0eG\\f{0)=eH}
Identity:

.'. eG eker(f)
Closure:

Suppose 0^,02G ker(f).

=>f(0i*02)
= f(0i)Of(02)

=>0i*02eker(f)
.'. ker(f)isclosedunder *

Inverses:

Suppose geker(f)

=>f(g-') = f(gT
^f{0~') =

e^
= eH

=> -'-g-1 eker(f)
Associativity is Inherited from the parent group
Therefore, ker(f) isa

subgroup
of {G,*}

(property of homomorphism)

(definition of homomorphism)

(property of homomorphism)
v>

w*

Exercise 4F

+^c

x*y
-\342\226\240

1. (a) Which of the following functions/are homomorphisms
fromA to \302\243?

(i) A =
{C\\{0},x}, B = {M\\{0},x},/(*) = |x|

(ii) A =
{C,+},B

=
{R,+},/(jc) = |jc|

(iii) A =
{C\\{0},x}, B = |[0,27i[,+}, /(*) = arg(x)

where

x + y x + y<27l
x +

y
- 271 otherwise

(iv) A =
{Z,+},\302\243

=
{Z,+},/(x)

= 5;c

(b) For eachpartof (a) which describes a homomorphism,

give ker(/).

2. /is ahomomorphismfrom
{Q,+}

to {C,+} and /(3) = 2 + i.

(a) (i) State/(0).

(ii) Show that/(n) =
\302\253/(l)

for n e N. Hence find/(l).

(iii)Showthat /(
-

]
= -/(l) for neZ\\

\\n) n

(iv) Hence find an expressionfor f(q) for q e Q.

(b) Stateand provewhether/is injective, surjective or

bijective.

Topic 8 -
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/is a homomorphism from {G,*} to JH,o}.

Show that for any element aeG:

{geG\\f(g) = f(a)} = a*ker(f) [6marks]

Q /is a homomorphism from Gto H.
Show that ker (/)

= [eG} if and
only if/is injective. [6 marks]

Group {A,*} is {0,1,2,3,4, 5, 6, 7} under addition modulo 8.
Group{B,o}is{1,3,7,9}under multiplication modulo 10.

Homomorphism /: A \342\200\224>B is such that /(l) = 7.

(a) Find:

(i) /(6) (ii) ker(/) (iii) {aeA|/(a) = 9f
Homomorphismg: B\342\200\224>A is such that g (7) = 4.

(b) Find:

(i) ker(g) (ii) ker (go/) [12 marks]

D3 is given by the group table below:

<i-

v>

w*

+flc

e

r

s

X

y

z

r

s

e

y
z

X

s

e

r

z

X

y

X

z

y

e

s

r

y
X

z

r

e

s

z

y
X

s

r

e

Group {A,*} is |0,4J underadditionmodulo8.
Function f :D3^> A is a group homomorphismfromD3

to A. Find all possible kernels of/and explainwhy
there can

be no others. [9 marks]

Isomorphisms
Considerthe following two groups:

{A,*}
=

JZ4,\302\2514 j, integers under addition (modulo 4)

{B,o}= {Z5\\{0},\302\2565},
non-zero integers under multiplication

(modulo 5)

Although the elementsand operations are different, these two

examples have similar structures. Consider their Cayley tables:

The Cayleytable for \302\2514in Z4:

Element Order

0 1 (0 is the
identity)

1 4

2 2

3 4

F i
2

3

u

2
3
4

2
3
0
0

MM

0
1
1

4 Groups and subgroups y
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The
Cayley

table for \302\2565in Z5 \\ {0}:

1

2

3

4

2
4
1
3

3
1
4
2

4
3
2
1

Element

1

2

3

4

Order

1 (1 is the identity)

4

4

2

As we can see that each of these groups has an elementoforder
4, and each group is itself order 4, weknow (fromKey point 4.5)

that each must be a cyclicgroup:

{Z4,04}=<1>
and{Z5\\{0},\302\2565}=

<2>

We could therefore express each of the
groups

in terms of its

generator:

<i-

H

+a.

e c c \\ c3

c | c2 | c3 | e

c2
\\

c3
\\

e
\\

c

c3 e c c2

It should be clearthat we can define a bijective homomorphism
/from A to B by mapping a generator of A to a generator of B

and then workingthrough
the other elements in terms of their

powers.Forexample:

/(l)
= 2

/(2) = /(ie4l) =
/(l)\302\2565/(l)

=
2\302\25652

= 4

/(3)
= /(204l) =

/(2)\302\2565/(l)
=

4\302\25652
= 3

f{0)
= f(eA) =

eB
= l

KEY POINT 4.17

A homomorphism which is bijective is called an

isomorphism.

For
groups {G,*\\

and {H,o}, where n(G) = n(H), a bijective
function/: G \342\200\224>H is an isomorphism if and only if:

f(gi)\302\260f(g2)
= f(gi*g2)&>r*ll8i>g2eG.

Two groups, betweenwhichan isomorphism exists, are

said to be isomorphic.

V>

w

y

Isomorphic groups have identical underlying structures.

In addition to the propertiesofhomomorphisms,we can

demonstrate two more important features of isomorphisms
which follow from the definition:

,^Y
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Property 1

For groups{G,*}and
{H,oj,

and isomorphism f :G^H,
the order of elementg e Gwill always be equal to the order
of its image/(g) eH:

gn
=

eG^f(g)n
= eH

Proof:

Suppose that element g e G has order divisibleby n, so that gn
- eG.

<^ f (gn)= / {eG)
= eH (property of homomorphism)

<=> f{gJ
= eH (Corollary 3)

i

I Property 2

I For groups {G, *} and {H, \302\260},
and isomorphism f:G\342\200\224>H>

G is Abelian if and only if H is Abelian.

Proof:

Supposethat gl*g2=g2* gx for all gl9g2 e G.

<=>/(&)\302\260
/(&)

= /(&) \302\260
f(gi) for a11 (property of

gi >gi
G G homomorphism)

<^>hl\302\260h1=h1\302\260hl for all hlyh2eH (f is a bijection)

Thelast step in this proofreliesonce again on the fact that/is a

bijection,so:
H =

{f{g)\\geG}

that is, /(g) can take allvaluesin H,sothat if something is true

for f(g) for all g e G then it must be true for all heH.

Additional property for cyclic groups
IfG and H are both cyclic groups of the sameorder,with

G = <a> for some aeG and H =<b>for some beH, then there

is an isomorphism/such that f(an)
= bn for all n e Z.

orked example4.18

Let S = I a + bv3 | a>b e Q | and /: S \342\200\224>S be a function given by:

f(a + bS)
=a-bJ?>

Itis
given

that S forms a group under standard multiplication.Show that/is an isomorphism

from{S,x}to{S,x}.

Show that f is injective
\342\200\242

Suppose f(a +
b-s/3)

= f(c +
dyfE}

=> a - bv3 = c - dv3
=> # = c,b = d
.\\ f is mjectlve

1h

v>

w*

)

y

\342\226\240?Sp**1* + 0(.
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continued...

Show that f is injective*

Then show that f is*

a homomorphism

(preserves
operations)

For all a, be Q,

where a \342\200\224b

:. f is eurjectlve
:. f is blject'we

[a + bjd)(c + djd)
= (ac+ 3bd) + (bc + ad) V3

=>f((a+ b
V3) (c

+ ^ V3))
= (ac+ 3 W)

-
(be + ad)V3

and

f(a
+ bS) x f

(c
+

dS)
=

(a- bS)(c
- dS)

=
(ac

+ 3bd) -(be + ad) V3

-\"-

f((a
+

bV3)x(c
+

^V3))=f(a
+ bV3)xf(c +

^V3)

.'. f is a bljectlon which preserves operations, and hence is an

isomorphism.

n-

v>

w*

+^c

Exercise 4G

&.

EXAM HINT

In this worked example, we proved isomorphism with

algebra. For small groups, it is often easiest to prove that

two groups are isomorphic by recognising their common
group structure as one of the specified few in Section 4E.

It is not sufficient simply to show that two groups have the

same order structure.

r^

W

1. Define an isomorphism between two groups, {G,*} and {H,o}.

2. Isomorphism/mapscyclic group G to group H. Show that H

must be cyclic.

3. A relation R on the set S of all groups is definedas:
GRH ^> G is isomorphic to H

Prove that R is an equivalence relation.

Q Showthat function f:x\\-^lnxis an isomorphism from

{lR+,x} to {R,+}. [4 marks]

(a) SetA contains the elements 7,72,73,74,75,76, written

modulo 36.
Showthat A forms a group under multiplication (modulo
36),and determine the order of each of the elements.

(b) Find an isomorphism between the group from part (a) and

the group {0, 1, 2, 3, 4, 5}underadditionmodulo6.
[8marks]
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Option: Sets, Relations and Groups

)

y



C2- ^ 1%*

H

+^c

-^ 4

Q The following are permutations of the set |l,2,3,4,5|:
^12 3 4 5^

V

(I

V

(1

I2

P4
=

(a)

(b)

5

2

2

2

5

2

1

3

3
3

3
4

3
3

4

4
4

4
3

4
4

5

Give two more permutations p5 and p6 so that

P =
{ Pi' P2>p3 >p4 > Ps > p6}

form a group under composition
of permutations,and draw out the group table.

State, giving your reason,whether P is isomorphic to D3 or
to the cyclicgroupoforder6. [10marks]

JG,*}
is anon-Abelian group, withgeG.

Function /: G \342\200\224>G is defined by:

/:xh> g~l *x*g
Showthat/is an isomorphism from G to itself. [6 marks]

Q Groups{G,*}and
{A,o}

are isomorphic, with isomorphism

/:G-\302\273A.

H is a subgroup of G.Prove that the image of H under/will
form a subgroupofA. [6 marks]

{K\\{0},x} and{E+,x} are both non-cyclic,Abelian,

infinite groups. Explain why neither of the
following

can be

isomorphisms between them:

(a)
/:xh-\302\273|x|

(b) f:x\\-^2x~l [4 marks]

jj The set of symmetriesof a non-squarerhombus is

S =
{D,d,r,e}, where:

D representsreflection
through

the longer diagonal

d represents reflection through theshorter
diagonal

r represents a rotation of n about thecentre
e represents a rotation of 0 about the centre

(a) Write down the table of operations for Sunder o, the

composition of transformations.

(b) Assuming o is associative,show that S forms a group
under o.

(c) State,with justification, whether {S,o j is isomorphic to

|{l,-l,i,-i},x}. [10marks]

- Q,
y*\\k

hn
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(a) Show that set A = {1,5,7,11} forms a group under\302\25612,

multiplication (modulo 12).

(b) Function/:Z4 -^Zis given as/(x) = 5-13x+llx2-2x3.
Show that/is a bijection from Z4 to A and establish

whether it is an isomorphismbetween
groups {Z4,\302\2514}

and{A,\302\25612}. [8 marks]

Set Fn is defined for any positive integer n as:

Fn
-

[x g Z+ | x < n,gcd(x,n)=l}
(a) Show that Fn forms a group under multiplication

(modulon).
(b) Determine which of groups F5,F8,F10 and F12 are

isomorphic. [10 marks]

H

+\302\253c

Summary

\342\200\242In this chapter we introduced the conceptof a group,and investigated properties of groups
and subgroups, with specificreferenceto

groups
of functions, permutations, symmetries and

integers modulo n.

\342\200\242A group is any set A together with a binary operator * such that:

- a*b g A for all a,beA (A is closed under *).
- eeA(Acontains the identity of *).

- For alla e A,a'1e A (A contains inverses for all its elements).
- a * (b *

c)
= (a *

b)*c
for all a,b,ceA (* is associativein A).

\342\200\242A group which is also commutative is calledan Abelian group.

\342\200\242For group $G, *j, n (G) is thenumberofelementsofG,called the order of G.

\342\200\242A cyclic group has a generator element,so that every element of the group can be expressedas
apowerofthegenerator.

\342\200\242
{H, x-} is a subgroup of a group {G,*}when H c G and {H, *}fulfils the group axioms;

associativity can always be assumedtobe inherited.

\342\200\242
Lagrange's theorem states that for any subgroupH ofa

group G, n(H) divides n(G).

- the orderof
any

element will divide the order of a group containingit.
- a prime order group will be cyclic, with every non-identity elementasgenerator.

\342\200\242
Simple group structures:

-
Any prime order group must be cyclic (Cp).

- An order 4 group may be cyclic (C4)or Klein-four.
- An order 6 group may be cyclic (C6)or isomorphicto D3.

\342\200\242
Symmetries of a 2-dimensional figure, expressed as rotationsand reflections, form a group
under composition. For a regularn-gon,the

group
is called Dn, the dihedral group of ordern.

\342\200\242Permutations of a list of elements form a group undercomposition.

v>

w

y

W
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Decompositionofapermutationinto independent cycles is useful for determining order.

A homomorphism is a function mapping one group to anotherwhich preserves operations, so

that for f:[G,*}^{H,o}:

f{gl*g2)=f(gl)\302\260f{g2)

f{eG)= f(eH)

/(*\") =/GO\"

The kernel of a homomorphism is that subgroup of the domain which maps to the
identity

element of the codomain group.

ter{f) = {geG\\f{g) =
eH}

An isomorphism is a bijective homomorphism:
- isomorphicgroups

have identical group structures

- isomorphismspreserveelementorder.

1h

H
V>

W*

+^c

)

y
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Ml 6

Mixed examination practice4

Prove that the set {3n\\neZ} forms a group underaddition.

ConsidersetsG=
{1,9,11,19} and H = {1,3,7,9} under multiplicationmodulo20.

(a) Draw a Cayley table for each set.

(b) Prove that both G and H are groups.

(c) Write down the inverse of the element 9:

(i) inG (ii) inH

(d) State, with a reason, whether H and G are isomorphic.

Let F = {1,2,3,4}and let \302\2565denote multiplication modulo 5.

(a) Show that (F,<8>5) is a group and list the ordersofalltheelements.

(b) State, with a reason, whether (F,\302\2565) is a cyclic group.

Operation * is defined on R2 by:

(a,b)*(x,y) = (a+x-by,b+
y)

Show that W forms a group under *. [6marks]

Show that every cyclic group of order at leastthreehas at least two generator
elements. [6 marks]

Functions{p,q,r,s}are defined on R \\ {1}, and:

p[x)-x

x-l

r[x)-2-x

(a) Given {p,q,r,s} form a group under composition of functions, find s.

(b) Show that q2 = p and that q and r commute.

(c) Draw the grouptable. [9marks]

Relation 0 is defined on C \\ {0} by:

w<)Z if and only if arg(w) = arg(z)
(a) Show that 0 is an equivalence relation on C \\ {0} and partitions it into classes

Ae given by:

A,={acis(6>)\\aeR+}

. . [ arg(w) + arg(zP
Operation * is defined on C by w*z =

\\wz cis
1 '

I
2

(b) Show that Ae forms a group under *.

(c) Find the imageofAe under function f :z\\-> \342\200\224and show that/is an

isomorphism between the two groups. [10 marks]

Topic 8 -
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Group {G,*}has subset H such that:

H = {gg G|g * a = a * g for all a e G}
Showthat H is a subgroup of G. [6 marks]

2 GroupGoforder8with operation
* has elements {e,p,p2,p3,q,qp,qp2, qp3},

where qp is taken to mean q*p.

It is known that p2 -q2
- [qp) .

(a) Showthat p4
= e.

(b) Show that p =
<jpq and q

= pqp.

(c) Determine whether Gis Abelian. [8marks]

jj Let a, b and p be elements of a group (H,*) with an identity element e.

(a) If elementa has ordern and element a'1 has order m, then prove
that m- n.

(b) If b=p~l *
a*p, prove, by mathematical induction, that bm =

p~l * am * p,
where m = 1,2,.... [9marks]

(\302\251IB Organization 2000)

Shown below are the operation tables for two isomorphic groups G and H.

\\d
a
b

c

a

b

c

d

b

c

d

a

c
d
a
b

4 8 2 6

8 6 4 ~2

2 4 6 ~8

6 2 8 4

(a) Function/isan isomorphism from G to H. Give all possiblevaluesof/(a),
f(b),f(c) and f(d).

(b) Give a possible operation representedby
o. [6 marks]

G is a cyclicgroupoforder12with identity e and an element r such that r4 has

order 3.

(a) Write down the possibleordersfor r.

(b) Given that the order of r12 is less than the order of r6, write down in
termsofr the elements of an order 4 subgroup H of G. [8marks]

An element g of a group Gis said to be 'asymmetric'if:

g*x =
x*g^> x = gyx-e or g-e

Showthat a group, all of whose elements are asymmetric,canhave order no

greater than 2. [4 marks]

ConsiderthesetU= {1, 3, 5, 9,11, 13} under the operation*,where * is

multiplication modulo 14. (In all parts of this problem,thegeneralproperties

of multiplication modulo n maybe assumed.)

(a) Showthat (3 * 9) * 13 = 3 * (9 * 13).

(b) Show that (17,*) is a group.

4 Groups and subgroups y
117
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(c) (i) Define a cyclic group.

(ii) Showthat (U, *) is cyclic and find all its generators.
(d) Show that there are only two non-trivialpropersubgroups

of this group,
and find them. (29marks)

(\302\251IB Organization 1999)

G - [e,a,a2, a3 ,b,b * a,b * a2 ,b *
a3}

forms a non-Abelian group of order 8
underoperation*.
(a) Show that a has order 4.

(b) Showthat b2 = a2 or e.

(c) If b2 = e, show that G is isomorphicto D4.

(d) Assuming
b2 = a2:

(i) show that b*a3 =a*b.

(ii) find three subgroups of G of order 4. [10marks]

A =
{2*(modulol5)|neN}

B = I cisl \342\200\224I for n e {0,1,2,3} I

(a) Showthat B forms a group under multiplication.

(b) Write down the operation table for A under multiplication (modulo 15).

(c) Write down the orderofeachelement of A.

(d) fix)
= e12log2X. Show that/is an isomorphism from A to B. [10 marks]

G is the setofpermutations{A,B,C,D},where:

A =

C =

1

4

1

3

2
3

2
1

3
?,

3

4

4^

1 ,
V*

4)

2)

' B =
/

'
V

\342\200\242\"\"[

I

12 3 41

12 3
4^

12 3 4

2 4 13

(a) Draw the Cayley table for G under *
(composition of permutations) and

show that {G,*} forms a group.
(b) Identify a set S <z Z and an operation o such that

{G,*}
is

isomorphic to {S,o}. [10marks]
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Summary
and mixed

examination practice
1-

Introductory problem revisited

An automated shuffling machine separates a deckof n cardsin half, leaving the extra

card in the lowerhalf if n is odd,inverts the lower half and then exactly interleavesthe
two, so that an ordered deck of cards labelled1,2,3,...,n would, after one shuffle, be in

the order n,1,(n -1), 2, (n -2), 3,...

The machine is usedon a deckofseven cards.

After how many shuffles would the deckhave returned to its original order?

Would it be possibleto usethemachineto
exactly

reverse a deck of n cards? If so,for
what values of n?

v>

w

We can interpret this as a permutationpn on n cards. In the first case, where m = 7, we see that the

permutation is:

('7162534^
Pi =

12 3 4 5 6 7
= (7124)(63)

J

+\302\253.

(Notice that the description of the permutation told us thesourceofcards in the new arrangement
rather than the destinationofeachcard in the original arrangement, hence the slightlystrange
ordering.)
This permutation has order 1cm (4, 2) = 4, soifrepeated4 times (or any multiple of 4 times),
it will restore thedeckto its original state.

The question about the generalcaserequiresmore subtlety. We are asked whether, for:

fn 1 n-\\ 2 ... \\nl2\\\\

Pn
=

1 2

and reverse ordering:

r-
fn n-\\ n\342\200\2242n-3

[l
2 3 4 n)

thereissomevalue k such that:

(P*)*
= :

(The upper brackets[ ~| are a shorthand notation for the ceiling'function,which returns

the smallest integer value greater than or equalto the value in the brackets. So |~4~|= 4 and

|~2.5~|= 3.
Similarly,

lower brackets |_ J denote the 'floor' function which returns thegreatestinteger

y
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value less than or equal to the value in the brackets. Using these, we avoid
having

to separate the

working for the two cases,n odd and n even.)

The decomposition of r givesmultiple2-cycles
r =

(l\302\253)(2 (\302\253-l))...([\302\253/2j \\n/2])

whereas the decomposition of pn contains the cycle c - (n 12 4...
n/2

I.

It follows that if [pn) is requiredto mapn \342\200\224>1, it must contain c as given above,and no powerofc
which is not itself equal to c (since any

other power of c will map n to an elementotherthan 1).

But c maps 1 to 2.

Soif
(pn)

is required to contain the transposition (1 n) then n - 2.

Hence the only decksizewhich can be exactly reversed by the protocoldescribedisa deckofsize 2.

Summary

This Option covers abstractconceptsofoperations,relations and groups, which generalise familiar

algebraic ideas.Tobuild up theseconceptswe need a good understanding of sets. An operation is a

way of combining two elementsof a setto geta result(for example, adding two numbers produces
another number) and a relationisa rule that two elements may or may not satisfy (suchasbeing
equal).In this Option we concentrated on properties of operationsand relationsthemselves,rather
than on the particular elements on which they act.Ofspecialinterest is the concept of a group,
which is a setwith an operation with certain properties that allow us performcalculationssimilar
tothoseofbasic algebra. Once we know the structure of a group (suchastheordersofall the

elements and possible subgroups), we can deriveconclusionsabout its elements without worrying
about what those elementsare.This means that if two groups have the samestructure (such groups

are called isomorphic) we can useour
knowledge

of one group to make conclusions about the
other.Thus abstract calculations can lead to results about concreteobjects.
In chapter 2 of this option, we examined the structureand rules surrounding sets in a formal way
and encounteredthealgebraicconcept of a binary operation, which combines two elementsof a set
undera defined rule to produce a new element.

You should know about:

\342\200\242Sets and notation for their description, size,exclusionsand subsets.

\342\200\242
Operations on sets and the qualities of closure,associativity, commutativity and distributivity
for operations.

\342\200\242The concept of identity and inverse elements for a given operation.

\342\200\242Set operations of union, intersection, set differenceand symmetricdifference,and the

interactions between them.

\342\200\242
Distributivity of union with intersection and the interactionofcomplementwith union and

intersection (De Morgans laws).

In chapter3 of this option, we introduced the concept of ordered pairs and theCartesianproduct

of two sets; we then considered relationsand
finally

functions as subsets of Cartesian products,
under specifiedrestrictions.

Topic 8 -
Option: Sets, Relations and Groups
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You should know about:

\342\200\242The Cartesian product of two sets and how to interpretorderedpairs.
\342\200\242Relations as subsets of Cartesian products, the conceptsofdomainand range for a relation and

the qualitiesof
reflexivity, symmetry and transitivity for relations.

\342\200\242
Equivalence relations, equivalence classes and the specificexampleofnumerical

congruence

modulo n as an equivalence relation on integers.
\342\200\242Functions as restricted examples of relations, the conceptsofdomain,range

and codomain for

a function and the qualitiesof
injectivity, surjectivity and bijectivity for functions.

\342\200\242
Composition of functions, the inverse of a bijectivefunction and how to determinethese.

In chapter 4 of this option, we introduced the conceptofa
group,

and investigated properties of

groups and subgroups,with specific reference to groups of functions, permutations, symmetries
and integersmodulon.

You should know about:

The four axioms of a group and theadditionalrequirementfor an Abelian group.

Cyclic groups and their generatorelements.

Lagrange's
theorem and its corollaries which show how theorderofa group can be used to

provide information ontheordersofelements and subgroups.

The structures of small groups, specifically cyclic groups, the Klein 4-group and the dihedral
group D3.

Examples of groups: Functions, symmetries of plane figuresand permutations.

Homomorphismsas functions between groups which preserve operations.

Homomorphismkernelasthe
subgroup

of elements of the domain group which aremappedto
the identity of the codomain group.

Isomorphisms asbijectivehomomorphismsbetween
groups

of identical structure.

<i-

v>

w*

)

+fl.

y
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Mixed examination practice 5

Show that the set T = {a + bj3\\a,b e Z} forms a group under addition.

[4 marks]

Therelationi? is defined on the set of complexnumbers

(a)

(b)

(c)

Show that R is an equivalencerelation.

Q denotes the equivalence class containing i.

Describe Q on an Argand diagram.

Show that Q forms a group undermultiplication.

Considerthe set G = {1,3,5,9,11,13} under multiplication

(a) Constructa
Cayley

table for G.

(b) Given that G is a group,
(i) Find the order of each element.

(ii) Write down the inverse of 9.

(iii) Find a subgroupoforder3.

by^^2^ki|H^|.

[8marks]

modulo 14.

[8 marks]

In this question, [/denotesthe universal set and J\\4 denotes the set of all
subsetsof [/.

(a)

(b)

For a set A e M, write down AnU and A n0.

Use Venn diagrams to illustrate that the operation n is associative.

(c) Explainwhy {.A/f, n} is not a group,stating clearly

not satisfied.

Operation * on R is definedbyx^y-x +y-a where a e

(a)

(b)

(c)

(d)

The

(a)

(b)

(c)

Prove that R forms a group under*.
State, with proof, whether the group is Abelian.

Prove that there are no elements of order 2.

Showthat M+ does not form a group under *.

;operation* on R is defined by:

x* y -
x\\y\\

Show that * is not commutative.

Show that * is associative.

Determine whether R forms a groupunder*.

which groups axiom is

[7 marks]

e R is a fixed constant.

[12 marks]

[8marks]

122 Topic 8 -
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For each of the following groups, write down theminimumpossibleorder of

the group, giving your reason.

(a) GroupA is cyclic and has a proper subgroup.

(b) GroupBhas a proper subgroup of order 3.

(c) GroupC has three proper subgroups. [6 marks]

A group G with identity e contains two distinct non-identity elementsa and b,

such that:

a7 -e

a~lba= a5b

(a) Show that b = aba.

(b) Prove that b = anban for any n e N.

Function/is defined on IR\\{0,l,/c} by

[6 marks]

1

2-2*

Functiong is
given by g(x)

= ff (x).

(a) Find #(x) and gg(x).

(b) State value /c such that/is bijectiveon R \\ {0,1,k}.

(c) K is a group of order 4 of functions on R \\ {0,1, k} under composition,
with f,geK. Find the othertwo elements e and /z of K and construct
the

group
table. [12 marks]

Let ]\302\243\342\200\236be the relation on Z congruence (modulo \302\253)'

(a) Prove that Rn is an equivalence relationonZ.

(b) Prove that Rn partitions Z into n distinct classes.

(c) Let 7Ln be the set of all the equivalenceclassesfound in (b). Define a

suitable binary operation *m on Zm and prove that {Zm,*m} is an additive
Abelian group.

(d) Let {G,o} be a cyclicgroupofordern.Prove that {G,o} is isomorphic

to{Zm,*m}. [17 marks]

5 Summary and mixed examination practice 123
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11. Consider the group G defined on the set S= {1,2,4,5,7, 8} having the

following Cayley table.

*

1

2

4

5

7

8

1
1
2
4
5

7

8

2

2

4

8

1
5
7

4
4
8
7
2
1
5

5

5

1

2

7

8

4

7
7

5

1

8

4

2

8

8

7

5

4
2
1

(a) Explain what is meant by saying that this table is a Latin square.

(b) Solvethe equation

2 * x * 7 = 4 wherexeS.

(c) (i) Show that G is cyclic and find the generators.

(ii) List the proper subgroupsof G. [15
marks] (\302\251IB Organization 2006)

A group G of order 9 containsdistinctelementsx andy each of order 3 with

^^ x ^ y2. The identity is given as e, and theresultofthe
group operation on

elements a and b is denoted ab.

(a) Write down the elements of a proper subgroupwhich does not contain x.

(b) Find the orderofxy
(c) Express [xy) as a product of two of the elementsx,y,x2and y2 and hence

show that xy = yx.

(d) Henceprove that the group is Abelian and list theelementsin
simplest form. [15 marks]

13. The group (G,x) has a subgroup (H, x). The relation R is defined on G by

(xRy) <^> (x_1y e H), for x,j/g G.

(a) Showthat R is an equivalence relation.

(b) Given that G = {e, p, p2, q, pq, p2q\\, where e is the identity element,

p3 =
q2

= e and qp = p2q,prove that qp2
= pq.

(c) Given also that H = {e, p2q\\, find the equivalenceclasswith respect

to R which contains pq. [16 marks]

(\302\251IB Organization 2005)
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sheet:

Groups
of order 6

i >.

<1-

H

+fl.

We can find all group structuresoforder4,by using the method demonstrated in Section 4E.
We can determine all possible structures for groups of order6

by
consideration of Lagrange's

theorem and construction of Cayleytables.

By Lagrange's theorem, each element must have order 1,2,3or6.
If

any
element has order 6, then the group must becyclicC6, isomorphic to

{Z6,\302\2516}.

Alternatively, suppose that there is no elementof order6.

Suppose element a has order 3.

Then the groupcontainselementse, a and a2 and must contain alsoanotherelementb distinct

from these, and hence (by closure)alsob * a and b * a2.

Partially construct a
Cayley

table using these details:

*

e
9

a1

b

b *a

b *a2

- 9 ,2 9 9 * 9 9 * 92

There is not yet sufficient here to uniquely determine the remaining cellsof thetableaccordingto
the Latin square requirement, but we can use a reasoned

argument
based on inverses.

Consider which element could representb~l:

We already know that b*e^e,b*a^e and b*a2 ^e.

If b *
(b

*
a)

\342\200\224e then, by associativity, b2 *a = e

=> (by uniqueness of inverses), b2 - ^ e

and also b3 \342\200\224b^a2̂ e.

So b cannot have order 2 or 3, and hence by Lagrange must have order 6,which contradictsour
initial requirement.

By exactly the same logic, if b *
(b

*
a2)

= e then we find again that b must have order 6.

v>

w*

)

y
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The only way we canconstructa non-cyclic group is to require that b~l \342\200\224b, so that b has order 2.
Equivalent arguments can be used to show that b * a and b *a2 must alsobe self-inverse. We can

then complete the Cayley tableusingassociativity
and the Latin square principle.

*

e

a

a2

b

b *a

b *a2

e a a2 b b *a b *a2

Finally we considerthecasewhere a group of order 6 only has elementsoforder2.
We know that any such group must be Abelian (See Worked example 4.5). Then [e,a,b,a *

b]
will

be closed under * and form a Klein subgroup within the group.Since
by Lagrange's theorem no

group of order 6 could have a subgroup of order 4, we conclude that there can be no group of order
6,allelementsofwhich are self-inverse.

Thus there are only two possiblestructuresfor
groups

of order 6: The cyclic group with order
structure1,2,3,3,6,6 and this second structure, denoted D3 (D6in some texts),calledthe

'dihedral group of order 3', which has orderstructure 1, 2, 2, 2, 3, 3.

D3 is the smallest non-Abelian group, since cyclicgroupsand the Klein group are all Abelian.

<i-

v>

w*
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Answers

ANSWER HINT

For this Option, when you are asked
to prove or show, there will not be any
answers supplied; in some cases hints have

Chapter 1

Exercise 1A
1. Assume that n2 is even but n is odd, and consider

nxn.
2. Assume that there are such numbers and factorise

the expression. ^
3. Assume that log2 5 = \342\200\224and rearrange this

expression to get even = odd.
4. Suppose that L is the largest eveninteger and

consider L + 2.
5. If this was not true, all of them would be under 18;

what can you say about the average?
6. Assume that a-vb \342\200\224c where a and c are rational

and b is irrational, and consider c \342\200\224a.

7. Assume that C ^ 90\302\260,and consider two possible
cases: C< 90\302\260and C > 90\302\260.In each case draw a

perpendicularline from C and apply Pythagoras to

the resulting triangle.
8. (a) -0.682

(b) Write x = \342\200\224and show that p and q must both
be even. Q

Chapter
2

Exercise 2A

i. (a)
(b)

(c)

(d)

(

(

(

(

(

(e) (
(

(a) (
(b) (
(c) (
(d) (

(
(e) (

) a,b,c,d (ii)

a,e,i,o,u (ii)
) 0,1,2,3,4 (ii)
) -4,-3,-2,-1,4
i) 0,l,i,-l,-/

1,3,5,7,9
i) -6,-3,0,3,6

2,4,6,8

2,3,5,7

2,-2

4 (ii) 2
) 0 (ii) 1

12 (ii) 50

7

i) \302\260o(infinite set)

6 (ii) 7

3. (a) Q, K

(c) N, Z,

(b) None
(d) Q,R

- 3,
r*i>r

Kn

4. (a) AcB,e.g. -leB,-liA
(b) A = B

(c) A z> B, eg n e A,n \302\243B

(d) AczB.0eB

5. (a) {0,{O},{1},{O,1}}
(b) 0,{a},{b},{c},{d},

{a,b},{a,c},{a,J},{fr, c}, {fr, J}, {c, J},

{a, fr, c}, {a, fr, J}, {a, c,J}, {b,c,J},

Exercise 2B

1. (a) (i) 4

(iii) 0

(c) (i) x =5

2. (a) A,B

(c) B,C

(ii) -11
(iv) 15

(ii) x = -2

(b) A

(d) B,C

3. (a) (i) e=-l, x~l = -x-2

1 i 1
(n) e = \342\200\224,x

l = \342\200\224,x ^ 0
2 4x

(b) (i) No identity

(c) (i) e = 0, x~l = x

Closed,e=0
(b)

Not closed, e = 4

(c)

Closed,e \342\200\2241

(a) (i) Yes (ii) Yes

(iii) No (iv) Yes

(b) (i) Yes (ii) Yes

(c) (i) No (ii) No
(d) (i) No identity in Z+

(ii) e = 2
(e) (i) x~l = x for all xel

(ii) e=0, v
x = -v

(ii) No identity

1KB

1
o

\342\226\240

^

3

u

1

1
1

n

i
0
1

MM

i
i
3

Hifl

0

0

0

0

0
1
2

3

0

2

4

6

0

3

6
9

7
8

9

8

8

9

9

9

9

(ii) X-1 =
x-1

for all igZ\\{1}

Answers 127
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7. (a) Closedfor k<\\

(c) Associative

(e) {xeZ+ |*<2&}

8. (b) (i) 0

(b) Commutative

(d) e = k

(ii) 1 (iii) 2

Exercise 2C

1. (a) (i) {a,b,c,d,e}
(iii) {a,b,c,f,g,h}

(b) (i) {c}

(iii) fe,h}

(c) (i) {a,b}
(iii) {&,*,*.}

= C

(d) (i) {a,b,d,e}

(iii) {a,c,g,/j}

2. (a)

Answers

(ii) {a,b,c,g,h}

(iv) {a,b,f,g,h}

(ii) 0

(iv) {/}

(ii) {d,e,f}
(iv) {c,d,e,g,fr}

(ii) {a,c,g,h}

(iv) {fe,c,/}

1C7\"

GO

(e)

3. (a) U (left and right)

(b) 0 (left and right)

(c) 0 (is the left-absorbing element,there is no

right-absorbing element.)
(d) No absorbingelement

8. (a)

(AkjB)'= A'<^B'

9. (a) (i) Z+
(ii) Positive even integers

(iii) Multiples of 6
(iv) Odd multiples of 3

Mixed examination practice 2

3. (b)

/i\\

V1/

a

1

vfey

(c) Associative and commutative

8. (a) 1 (b) Associative, closed, not commutative

0 Chapter 3

Exercise3A
1.(a) {(0,2),(0,3),(4,2),(4,3)}

(b) {(U),(2,l),(3,l)}

2. (a)

12 3 4 5

(b)

4-

3-

2-

1-

0

\342\200\242

\342\200\242

\342\200\242

1

\342\200\242

\342\200\242

\342\200\242

2 3

\342\200\242

\342\200\242

\342\200\242

4
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3.

4.

1 *

(a) {(W),(M>(M>M>M)>

(c,w),(d,/),(d,o),(d,w)}
(b) {(a,l),(a,4),(e,l),(e,4)}
(c) {(a,l),(a,4),(e,l),(e,4)}
(a) At least one option appears on both starter and

main course lists

(b) A meal deal may be one of:

(c) None

(d) Reflexive, Transitive

5. (a) Equivalence
(b) Not transitive

(c) Not transitive or reflexive

(d) Not transitive

(e) Equivalence
(f) Not symmetric

' V

Starter + non-starter main course
Starter + dessert
Main + dessert

(c) There are no three-coursemeal deals.

5. False when B= 0

Exercise 3B
1. (a) (i) Domain {0, 1, 2, 3},Range {0, 1, 2, 4}

(ii) Domain{3,4,6,8},Range{1,3,5}
(b) (i) Domain{l,3,5,7},Range {0,1,2,3}

(ii) Domain{-l,0,l,2,3},Range{-l,0,3}

(c) (i) Domain{l,2,3},Range{3,4,5,6}

(ii) Domain {a, b, d,f},

Range{fr/g,bad, wolf}

2. (a) (i) {(1,1), (1,5), (1,9),
(3,3), (3,7),(3,11)}

(ii) {(1,5),(2,11),(3,7),
(4,3)}

(b) (i) {(1,9),(2,9),(3,3),

(3,9),(4,9)}

(ii) {(2,3),(2,9),(4,3),

(4,9)}

Exercise 3C

1. (a) (i) Domain {0,2,3}, Range {1,2,3}
(ii) Domain {1,2,3,4}, Range {-1,1,2}

(b) (i) Domain {l,2,3,4}, Range {2,3,4}
(ii) Domain {1,4,5}, Range {1,4,5}

(c) (i) Domain R, Range [-1.1]

(ii) Domain R, Range [-1,\302\260\302\260[

2. (a) {(5, 2), (6, 2), (6,3)}
(b) {(3,-l),(5,-l),(5,l),(7,-l),

(7,1),(7,3)}
3. (a) (i) Symmetric

(ii) Transitive

(b) (i) Symmetric

(ii) Reflexive, Transitive

(c) (i) Reflexive

(ii) Reflexive, Symmetric, Transitive

4. (a) Symmetric

(b) Reflexive, Symmetric, Transitive

6. (b)

(c)

7. (b)

8. (a)

(c)

(d)

{(5cose,5sine)|ee]-7T,7r]} or

{{x,y)\\x2+y2=25}
Plane partitioned into concentric circles,
centred at origin.

2 classes:

@ =
{3,6,9,...}

= {3n\\neZ+},

5= {1,2,4,5,7,8,...}= Z+ \\ @

No

S = {x,6-x}forall xeR
{3}

Exercise 3D

1. (a) (i) [-13,oo[ (ii) [-7,-1]
(b) (i) [-2,oo[ (ii) ]-oo,oo[

2. (a) (i) Function

(ii) Surjection

(b) (i) Not function

(ii) Bisection

(c) (i) Bisection
(ii) Surjection

(d) (i) Not function

(ii) Function

3. (a) Infective
(b) Surjective
(c) None

(d) Bijective

4. (a) Bisection:

r(*)=(f
(b) Bijection:

/-,(jv.)_^+i)(-ir-i

5. (a) fDg(x) = 2x-3,gUf(x) =2x-6

(b) fDg(x)
= U-x,gUf(x) = -x-2

(c) fUg{x)= \342\200\224-\\= gUf(x)

6. Untrue, g and h may have different domains

, x r i/ \\ (ly-x x + y^
7. (c) f-l(x,y)

= { y y

, x (x + y 3x-y
8. (b) rw) =

\\\342\200\224r>\342\200\224r^4 4

(c) Not injective,not surjective

* /.
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9. (a) range
= [-16, oo[, not injective

fx2+4*-12 for 0<x<2

x2 \342\200\224Ax+ A for 2 < x < \302\260\302\260

Vx + 16-2for-12<x<0

2 + v x for 0<x< oo

Mixed examination practice 3

1. (b)
Im

\342\226\272Re

3. (b) 6 classes:

P= {1,9,11,19,...}= {5\302\2614
+ 10rc|rceN}

S= {2,8,12,18,...} =
{5\302\2613+ 10rc|rceN}

\302\247= {3,7,13,17,...} = {5+ 2+10\302\253|\302\253g N}

3= {4,6,14,16,...} = {5+1+10\302\253| n e N}

\302\247={5,15,25,...}={5+ 10n|neN}
ft ={10,20,30,...}=

{lOrc | n g N}

4. /: surjective;not injective

g: injective; not surjective

5. (b) {2,4,8,10,14}and {6, 12}

7. (a) Range off isy > 2
(b) Show that g is injective and surjective;

g~l(u, v)
=

{\342\200\224u+ 2v, 2w -
3v)

(c) (i) not injective; (x,y) and (y, x) have the
same image

(ii) not surjective;(0,a) is not in image for

a *0, e.g.(0,1)

8.

9.

(c) gcd(3,15)
= 3

gcd(15,20) = 5

butgcd(3,20) = l

(a) A = [e\"1+l,e + l]
(c) No.Range offa R

<a,f

(e) g 1(x)= arcsinln(l + )/)

(f) A

10. (a) a =0, b = 1

Answers

Chapter 4

Exercise 4A
2. (a) Not associative

(b) Group

(c) Group
(d) Group
(e) No inverse for 0

(f) Group

3. (a) mm

\\2
3

4

5

0

1

3

4

5

0
1
2

4

5

0

1

2

3

5

0

1

2

3

4

0

1

2

3

4

5

1

2

3

4

5

0

(b) Group
1 1 x

5 q:xU ,s:xU 1 ,t:xU
l\342\200\224x x x-l

i

d

r

q

s

t

d

i

q

r

t

s

r

s

i

t

d

q

q

t

d

s

i

r

s

r

t

i

1

d

t

1

s

d

r

i

6. (a)
b
c
d

\\ a

c

d

a

b

d
a
b
c

a
b
c
d

(b) d

(c) a

Exercise 4B

i.

2.

(a) 1
(b) 6

(c) 2

(d) 1

(e) oo

(a) Not a group: no inverses
(b) Group,not cyclic

(c) Not a group: not closed
(d) Not a group: 0 has no inverse
(e) Cyclic group: generators 1, 5

(f) Cyclicgroup:generators 2, 3

(g) Group, not cyclic
(h) Not a group: 0 has no inverse
(i) Not a group: not associative

- c\302\273
r*i>r
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+ 0(.



C2- ^ *K* ' v

V /.

H

+^c

3.

4.

(a) Cyclic, 3, 7
(b) Cyclic,2, 8

(c) Non-cyclic

(a) (i) 3

(b) 2

Exercise 4C
i.
3.

4.

5.
6.

(ii) 6

(c) 3

{0,1,2>3>4,5},{0,2,4},{0,3},{0}

Line parallelto the real axis.

e.g. {r+ i\\rsR}

(a) (i).(iii)
(b) (i) Q-

{1.-1}

(a) {3,11,19,27}
(b) {5,13,21,29}
(c) {0,8,16,24}

W{-^|\302\273ez

7. (b) {5,7}

8. (c) Gis the set of points in the plane
x +y-2z =0

Each coset represents a parallel plane.

13. (b) {1,6}
(c) {1,6},{2,5},{3,4}

14. (b) {2,1
+ ^/3,1-^/3}

16. (b) e

e

a

b

b2

a*b

b*a

a

a

e

b*a

a*b

b2

b

b

b

a*b

b2

e

b*a

a

b2

b2

b*a

e

b

a

a*b

a*b

a*b

b

a

b*a

e

b2

b*a

b*a

b2

a*b

b

a

e

(d) {b*a,b}

(e) {b2,b*a\\

Exercise 4D

1. l:M

2:{e,x}y{e,y},{e,z}

3:{e,r,s}
6:D3

No subgroups of order 4 or 5,by Lagranges

theorem

2. (a) 1,2,3,6,18
(b) 2,3,4,6,8,12

3. l,p,q,pq
4. G =

{0,2,4,6,8,10}/

subgroup {0,4,8}

6. (a) o 5 7

5 ! 7

3

>

*

1

7

5

7

1

3

5 |
3 !

1 !

Exercise 4E

1. (a) (i) 6

(b) (i) p~iq =

(ii) 2

2. (a) (i)

(ii)

(iii)

(iv)

(ii) 2

b c

c

5^
1

5
2

5

5^
4

d
d

(b) (i) 3

(iii) 2

(c) (0 2
(iii) 2

(ii) 3

(iv)4
(ii) 6
(iv)2

(d) (i)

(ii)

(iii)

(iv)

1

5

<\\

1

1

5
= 5

e r r2 r3 x

e \\ r \\ r2 \\ r3 i x

5^

2

5

51
3J

51

n y p

.\"AiApJ
r
r2

r3

x

n

y

p

r2

r3

e

n

y

p

X

r3

e

r

.2...
P
X

n

e

r

r2

.2...
X

n

y

p

y

n

e........

r2

r

X

P

y

r

e
r3

r2

n

X

P

r2

r
e
r3

y \\

n \\

X \\

r3 \\

\"7\"!

r \\

e \\

where x, y indicate reflection through the x-}

y- axes, andp,n indicatereflection through y
= \302\261x.

fa b c
(a) e =

\\

(b) 3

(c) q =
a d

Answers .131
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5. (a) {ClD1HlGl){C2D3H2G3){C3D2H3G2)
(b) (52 G3 ^ G2 E3Q )(D2C3 D3 C2 A Q)

(c) Swapand twist blocks B and G and blocks C
andD.

(d) All blocks would be in their original positions,
but B, G, C and D would have twisted.

Exercise 4F

1. (a) (i),(iii),(iv)

(b) (i) Unit circle {eie16e
[0,27i[}

(iii) Positive real line ]0,oo[
(iv) {0}

2.

5.

6.

(a) (i) 0 (ii) *\302\261I

(b) Infective.
*

(a) (i) 9 (ii) {0,4}
(iii) {2,6}

(b) (i) {1,9} (ii) {0,2,4,6}

ker(/) =
D3 or {e,r,s}

\342\200\236/wmu
n(D^

(iv)
2q + q\\

n
(range (/))

n(range(/)J
= 1 or 2, sothe kernel must contain 3

or 6 elements of D3

Kernel is a subgroup.

Exercise 4G

1. Function /: G \342\200\224>H is an isomorphism
between G and H if it is bijectiveand

f{gi * \302\2432)
=

/(ft) \302\260
figi) for all & ,g2 g G

5. (a) 7 and 75 have order 6

72and 74have order 3

73 has order 2

76has order 1.

(b) Isomorphism/:A \342\200\224>B given by/(7M) = 6 - n

or f(7n)
= n (mod 6).

6. (a) p5

12 3 4 5

12 4 3 5

12 3 4 5

5 14 3 2

rpr

pi

P6

ft

ft

ft

ft

ft

ft

ft

ft

ft

ft

ft

ft

ft

ft

ft

ft

ft

ft

ft

ft

ft

ft

ft

ft

ft

ft

ft

ft

ft

ft

ft

ft

ft

Answers

- Q,v>i>r
hn

(b) Cyclic. Generators p3 andp6

(a) Not bijective

(b) Does not preserve operations.
Alternatively, observe that there is no element in

^,x} with order 2, but that -1 has order 2 in

M\\{0},X j; the two groups cannot thereforebe
isomorphic.

10. (a)

F
\\r

\\d
\"

El

e

D

d

m
d

D

e

r

d

r

e

(c) No.Sis Klein, |{l,-l,i,-i},xj is cyclic.

11. (b) Not isomorphisms; order not preserved

12. (b) F5 with F10, F8 with F12

Mixed examination practice 4

2. (a)

pT9
11
>\302\273

9

1

19

11

11

19

1

9

19
11
9
1

1
3

7

9

3

9

1

7

7

1

9
3

9

7

3

1

(c) (i) 9 (ii) 9

(d) No; all elements in G have order 2, that is not

the case in H.

3. (a) Element

Order 1 4 4

(b) Yes; there is an element of order4.

x-1

p q r s

q p s r

r s p q

s r q p

11-

1h

v>

w

y

+ 0(.
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7. (c) A-o

9. (c) NotAbelian

11. (a) f (a)=2,8;f(b)=6; f (c)
= 8,2;f {d) = 4

(b) Multiplication (modulo 10)

12. (a) 3,6, or 12
(b) k^,r9}

14. (c) (i) Gisa group such that there exists a e G,
for which

G = {an:rce Z}
(ii) Generatorsare 3 and 5

(d) {1,13} and {1,9,11}

15. (d) (ii) {e,a,a2,a3},{e,a2,b*a,b*a3},
{e,a2,b,b*a2}

16. (b)

1

2

4

8

2

4

8

1

4

8

1

2

8

1

2

4

(c) 1has order 1
2, 8 have order 4

4 has order 2

17. (a)
5
A

D

C

A

B

C

D

D

C
A

B

mm

c

D

B

A

(b) e.g. {0, 1, 2, 3}with addition modulo 4.

Chapter 5

Mixed examination practice 5
2. (b) The unit circle

3. (a)

1

3

5

9
11
13

3

9

1

13

5

11

5

1

11

3

13
9

9
13
3

11

1

5

11

5

13

1

9
3

13

11

9

5

3

1

- c\302\273
r*i>r

Kn

(b) (0 Element

Order

11 | 13
3 2

(ii) 11

4. (a) A, 0

(c) No inverses

5. (b) Yes

6. (c) No; no identity

7. (a) 4

(b) 6
(c) 4

(iii) {1,9, 11}

9. (a) g{x)--

(b) Jfc=l/2

1-JC
1-2*>ggMz

(c) e(x) = x, h(x) \342\226\240
2x-\\

\\^
f

*
*

/
\302\243

/i

e

g

h

e

f

h

e

f

g

11. (a) Eachrow and each column contains each
elementexactly once.

(b) x = S

(c) (i) 2 and 5

(ii) {1,8} and {1,4, 7}

12. (a) {e,y,y2}
(b) 3

(c) (xy) =x2y2

(d) {e,x,y,x2,y2,xy,xy2,x2y,x2y2}

13. (c) {p\\pq}

Answers
y
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Glossary

Words that appear in bold in the definitions of other terms are also defined in this glossary. The abstract
nature of this option means that some defined terms can realistically only be explained in terms of other,
more simpleconcepts.

<i-

^^ Definition

Abelian group A group whose binary operationis

commutative over the elements of the

group.

Example
Any cyclic group is Abelian.

absolute

complement
All elements of the universal set not

present in the given set.

In Z, the absolute complementof the

set of even numbers is the set of odd

numbers.

associative A binary operation * is associative if

multiple instances of the operation can

be resolved in any order without affecting
the outcome:

x*(y*z) = (x*y)*zforallx,y and z

Addition is associative over R:

(x + y) + z - x + (y + z) for all x, y, z e I

bijection A function which is both injective and
surjective.

The function/: R \342\200\224\302\273R given by

/:xHx + l is a bijection.
binary operation An operation * which takes two elements

(arguments) and produces a single
element.

Addition in R is a binary operation.

cancellation For an associative binary operation *, if
the inversex~l of an element x exists, then

equation y * x = z * x can be simplified

to y
= z by right-cancellation, and

x * a = x * b can be simplified to a = b by
left-cancellation.

For a commutative operation, the left-

and right- specification is redundant.

Becausethe multiplicative inverse of 4

exists in R, we can simplify
4x = 24
to

x \342\200\2246.

cardinality The number of elementsin a set. Also

called size.
The cardinality of {1, 2, 3, 7, 9}is 5.

Cartesian
product

The Cartesian product of two sets A

and B is denoted A X B and consists of
all possibleorderedpairs (a,b)where

aeA and beB.

The Cartesianproductof {1, 2} and {3, 4,
7} is {(1,3),(1,4),(1,7),(2,3),(2,4),(2,7)}.

Cayleytable The grid array with set elements listed in

the title row and column cells,whereeach
internal cell is the result of performing a
given set operation on the title elements.

The Cayley table for A on set {1, 2, 3, 4}is:

A

1

2

3

4

1

1

2

3

4

2

1
4

9

16

3

1

8

27

64

4
1
16
81
256

closed A set S is closed under a binary
operation* if for any elements x and y in
S, their resultant x * y is also in S.

Z is closed under addition.

Glossary
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Definition Example

codomain

commutative

complement

composition

congruence

modulo n

cosets

cyclic group

De Morgan'slaws

dihedral group of

order n

direct proof

disjoint

Fora relationor function f :A^>B, the

codomain is B.

A binary operation * is commutative
over setS if for all x,yeS:

x*y=y*x

Shorthand for absolute complement.See
also set difference.

Application of a function to the output of

another function.

Composition is associative.

For integersx andy and positive integer

n, x and y are congruentmodulo n if

(x-y) is an integer multiple of n.

For a group {H,*} with subgroup G and
element aeH, h*G is a subset of H

given as a*G= {a*g|geG} andis

called the left coset of G,determinedby

a. Similarly, G *a is called the right coset

of G, determined by a.

A cyclic group has a generating elementa
such that each element of the group can
beexpressedas an for some integer value
of n.

For function /:Z^Z given by

/(x) = |x|+1, the codomain is Z, but
the range is Z+.

Addition is commutative in R, but

subtraction is not.

In Z, the complementof the set of even
numbers is the set of odd numbers.

The composition of

f:x\\-^x2 with\302\243:*H>* + 3 is

fog:x\\-^(x + 3) .

7 and 19 are congruent modulo 4 because

(7-19) = 4x(-3).

Forsubgroup G = {1, i, -1, -i} of

{C\\{0},x},
the left coset (1- i)xG =

The group of rotational symmetries of

any regular polygon is a cyclic group.

Paired facts relating to set operations:
\342\200\242The union of complements is the complement of the intersection.

A'vjB' = (AnBY
\342\200\242The intersection of complements is the complement of the union.

A'nB' = {AkjBY

The group oi symmetries of a regular

n-gon, usually denoted Dn.

Proof which uses known facts to

construct the desired result.

Two sets which share no common
element are disjoint.

D3 is the six-element group for the

symmetries of an equilateral triangle:
Rotations by 0\302\260,120\302\260and -120\302\260, and

reflections through each of the symmetry

lines connecting a vertex to the midpoint
of the opposite side.

Direct proof for the formula of the sum

of a finite geometric series:
Let

n-\\

Then
n\342\200\224\\ n\342\200\224\\

('\342\226\240-1)s\302\253=Xflr!+1-Xflr'
1=0 i=0
n n\342\200\224\\

=
^jar*

-
^jar*

i=l i=0

= arn -a
Hence, for r ^ 1,

\302\253(r\302\273-l)
S\"~

r-1

{1, 2, 3}and {4,5,6}are disjoint.

- Q,
y*\\k

hn
+ 0|..
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distributive

domain

equivalence class

equivalence
relation

finite group

generator

group

homomorphism

identity element

indirectproof

infinite group

injection

intersection

inverse function

Definition

For two binary operations * and o on a
setS,* is distribute over o if

x*(yoz) = (x *y)o(x*z) forall
y,zeS.

For a relation f :A^> B, the domain is
A . If / is a function, it can be assumed

that / is defined over all elements of A .
Where not explicitly stated, the domain

of a numerical function is taken to be
the maximal subset of R in which the

function is defined.

For an equivalence relation R, the

equivalence classx is the set of all

elements equivalent to x:
x =

{y\\ xRy}.

An equivalence relation is a binary
operationwhich is reflexive, symmetric
and transitive.

A group with a finite number of
elements.
An element a of a group with the

property that every element of the group

can be expressed as an for some integer
value of n.

Group {G,*}consists of a set G under a
binaryoperator*,which fulfils the four

group axioms
\342\200\242

associativity

\342\200\242closure

\342\200\242
identity

\342\200\242inverses

A function mapping elements of one
group to another group which preserves

group operations.

The unique element e for a given binary
operation*, such that x*e = e*x-x for

any*.
A means of supplying a desired resultby
rigorous argument which demonstrates

its necessary validity.

A group with infinitely many elements.

A function f:A\342\200\224>B where each

element of A maps to a distinct element
of B: f(x) =

f(y) onlyif x = y.

The set of elements common to two given
sets.
Intersection is denoted by the symbol n.

For abijection f:A\342\200\224>B, the inverse

function f~l has the property that

Example

Multiplication is distributive over
addition in R: x(y + z)

=
xy + xz.

The function f :x\\-^ has domain

R\\{1}.
x~l

{6n + 1}is an equivalenceclassunder the

relation congruence modulo 6.

Congruencemodulo n is an equivalence
class in Z for any positive integer n.

Thegroup of symmetries of a square is a
finite group with six elements.

i is a generator of the group {1, i, \342\200\224
1, \342\200\224i}

under multiplication.

{1,-1} forms a group under
multiplication.

{1,0,-1} does not form a group under
multiplication, since element 0 has no
inversein the set.

/: x h^ 2x js a homomorphism from

{z8,e8}to{z16,e16}.

In R, the multiplicative identity is 1 and

the additive identity is 0 .

Examples include proof by induction and
proof by contradiction.

{Z,+} is an infinite group.

/: R \342\200\224>R given by f: x h^ x+1 is an

injection; g: R \342\200\224\302\273R given by g -x *-> x

is not an inj ection, since g (-1) = g (1).
The intersection of {1,2,3 } and {1,3,5}
is{l,3}.

For/^l-^x + l.the inverse function is

J 2
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isomorphism

Definition

A bijective homomorphism.

Example

Function f :xU Inx is an isomorphism

from{R\\{0},x} to{R, + }.
kernel Forahomomorphismf:G^H,

the kernel is the set of elementsin G
which are mapped by / to the identity

of H .

ker(f)
= {geG\\f(g) = eH}

The kernel is always a subgroup of the

domain group.

Isomorphism /: {Z12,012}\342\200\224\302\273
{ Z4,04 }

is given by /(x)
= x {modulo 4).

Then ker(/)
= {0,4,8}.

Klein four-group The group structure of a four-element

group,each element of which is self-
inverse.

Theset {1,3,5,7}under multiplication

modulo 8 forms a Klein four-group.

For any subgroup G of a finite group H , n(G) is a divisor of n(H).Lagrange's

theorem

Latin square A table has the Latin square property
if each element appears exactly once in

each row and once in each column.
The Latin square property is a necessary
but not sufficient condition for a Cayley
table to represent a group.

The Cayley tablebelowhas the Latin

square property, but could not represent
a group,sinceno element could be the

identity.

*

a

b

c
d

a

c
b

a

d

b

b

a

d

c

c

a

d
c
b

d

d

c

b

a

order The order of a group is the number of
elementsin that group.

The order of an elementa is the least

positive integer n such that an = e , the

identity element.

The order of group {Z9,09 } is 9.

The order of element 6 under addition

modulo 9 is 3, since 6096096=0, the

additive identity.

ordered pairs An ordered pair is any element of a
Cartesianproduct AxB, consisting

of an element from one set A and one

element from set B, given in that order

with a comma separationand enclosedin
rounded brackets.

(2, 4), (5, 5) and (7,-1) are all ordered

pairs drawn from Z2.

partition A partition of a set is any fragmentation

of that set into disjoint subsets. Sets
A1,A2,...are said to partition set B if:
. AinAj=0 for all i*j
\342\200\242AX\\JA2\\J...

= B

The odd integersand the even integers

partition Z.

power The number of elements in a set. Also
calledsize.

The power of {1, 2, 3, 7, 9}is 5.

proofby

contradiction

A method of proof which works by
assuming the desired result is untrue
and demonstrating that this leads to an

impossibility or an internal contradiction.

The proof that v2 is irrational is given as
an example in chapter 1.

- Q,
y*\\k
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proofby

induction

proper

range

reflexive

relation

Definition

A method of proving that a result is
true for all positive integer values of a

particular parameter.
By explicitly demonstrating the validity
of one or more 'basecases'and then

demonstrating that each case canbe
shown to prove the validity of the

subsequentcase,the result is considered

proved for all cases.

A proper subset is any subset other than

the trivial subsets (the original set and
the empty set).

A proper subgroup is any subgroup other

than the trivial subgroups (the original

group and the group consistingonly of

the identity element).

The range of a relation or function

f :A^B is the set of all elements of
B appearingas right-components of

elements of the relation:

range = {b\\(a,b)ef for some aeA}

If / is a function, the range is more

simply definedas the set of values

{f(a)\\asA}.

A relation R is reflexive in a set S if, for
all x in S:

xRx

A (binary) relation is a setof ordered

pairs, usually generated according to an

underlying rule.

Example

Proof that
A

2 n(n
+ l)(2n + l)

tf~ 6
Base case: n = 1:

^2=12=1(1\302\2611)(2
+ 1)

~ 6
So the result is true for n = 1.

Inductive step: Assume true for n = k , so

i
2 k(k + l)(2k + l)

fd
\"

6
Then when n = k + l:

k+i k

r=l r=l

= *(* + l)(2* + l) 2

6

= \342\200\224
(2fc2+fc

+ 6(fc + l))

6 V }

(fc + l)(fc + 2)(2fc+3)
6

(Jfc
+

l)((Jfc
+ l) + l)(2(Jfc+ l) +

l)

6

The result is true for n = k + l.
So the result is true for n = 1 and if true
for n = k , it is also true for n = k + l.
Therefore this result is true for all
neZ+ by the principle of mathematical

induction.

{1, 3} is a proper subsetof {0, 1, 2, 3, 4, 5}.
{{1,-1},x}isapropersubgroup of

{R\\{0},x}.

Functions /, g: R+ \342\200\224\302\273R are given by
f:xD x2

g:xU Inx
The range of / is R+.
The range of g is R.

< is a reflexiverelation in R.

For set S = {1,2,3,4, 5}, the relation

R<^SxS is defined by aRb<^a2>7b
Then

\302\243= {(3)l))(4)l))(4,2))(5)l))(5)2))(5)3)}.
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self-inverse

set difference

size

subgroup

subset

superset

surjection

symmetric

symmetric

difference

symmetry

transitive

transposition

trivial

union

Definition

An element a is self-inverseunder a
binaryoperation*

if a * a = e , the

identity element.

Those elements of one set which are not

present in a secondset.
Set difference is given with a \\ symbol.

The number of elements in a set.

A subset of the elementsof a group

which itself satisfies the conditions to be a

group under the same operator.
A set of elements drawn from a given set.

A set of elements containing all the

elements of a given set.

A function whose range is the whole of
its codomain.f :A^B and for every

beB , there is at leastone element aeA

such that f(a) = b.
A relation R is symmetric in a set S if, for

any x and y in S:

xRy whenever yRx

The set of elementspresentin only one of

two given sets.
Symmetric difference is given with the A

symbol.

Any transformation of a shapewhich

maps it so that each edgecoincideswith

one of the initial edge positions.
A relation R is transitive in a set S if, for

any x, y and z in S:

if xRy and yRz, then xRz.

A permutation consisting of the exchange
of two elements.

The trivial subsets of set A are A

and 0.
The trivial subgroups of group { G, *

}

are {G,*} and {{*},*}.

Thesetof elements appearing in either or
both of two given sets.

Union is denoted by the symbol u.

Example

Under composition of functions,

f:x\\->l
\342\200\224x is self-inverse.

{1,2,3,4}\\{1,4,5,6} = {2,3}.

The size of set {1, 2, 3, 7, 9}is 5.

{{1,-1},x}is a subgroup of

{M\\{0},x}.

{l,2} is a subsetof
{l,2,3,6}.

{l,4} is not a subset of {l,2,3,6}.

{1,2,3,6} is a superset of {1,2}.

{1,2,3,6}is not a superset of {l,2}.

Functions f,g:Z^>Z are given by

f(x)
= x + 3 and g(x) =2x.

f(x) is a surjection, g(x) is not a

surjection.

Similarity is a symmetric relation in the
set of all triangles.

{l,2,3,4}A{l, 4,5,6}
= {2,3,5,6}.

A non-square rectangle has two
reflective symmetriesand two rotational

symmetries.

cis a factor ofJ is a transitive relation in

(\\ 2 3 4 5\\
Permutation p = \\F

[4
2 5 1 3)

can bewritten as a composition of two

transpositions:

p
=

(l4)(35)

{1,3}isa non-trival subset of

{0,1,2,3,4,5}.

{{1,-1},x} is a non-trival subgroupof

{K\\{0},x}.

The union of {1,2,3} and {1,3,5,7} is

{1,2,3,5,7}.
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universal set

Definition

The set of all elements under
consideration,denotedU.Ifnot

explicitly defined, U will usually be clear
from context as either Z or R .
The universal set must be known if

an absolute complement is to be

determined.

Example

If U= {1,2,3, 4, 5,6}and A =

A'= {2,3,4,6}.

= {1,5} then

H
V>

W*

+flc

)

y

,^Y
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Abelian group, 68

definition, 134
absolute complement, 9, 33

definition, 134
additive identity, 17

associativity

binary operations, 19-21
compositionoffunctions, 58

definition, 134

group axiom,68,72-73,93

property of intersection, 26

property of union, 25

symmetric difference, 28

bijectivity

definition, 134

functions, 55, 56, 63

isomorphisms, 110,115
binary operations, 12-22

definition, 134
on sets,25-32

binary relations, 40-42

cancellation, definition, 134
cancellationlaws, groups, 71-74

cardinality of a set, 7

definition, 134

Cartesian product, 38, 40,62
definition, 134

Cayley tables, 13-14, 67,69
cyclic groups, 76

definition, 134
Klein four-group, 90-91

'Latin square' property, 72-74

closure

definition, 134

group axiom, 68, 93

operations, 12-14
codomain

ofa function, 52-53, 63

of a relation, 41

definition, 135

commutativity
of an Abelian group, 68

binary operations, 15,33
definition, 135

inheritance of, subgroups, 81

property of intersection, 26

property of union, 25
symmetric difference, 28

complementary sets, 9, 33
intersection of, 26

union of, 25
complement, definition, 135

composition
of permutations, 95-96

of transformations, 92-93
of two functions, 57-60, 63

congruence (modulo n), 42, 62

definition, 135

contradiction, proof by, 3-5

cosets, 81-82
definition, 135

properties of, 83-84

cyclic groups, 76-78
definition, 135

isomorphism property of, 111-12

decompositionof permutations, 97-100

De Morgans laws, 29-31

definition, 135

dihedral group of order n, 93, 114
definition, 135

groups of order 6 (D3),91,126
direct proofs, 3

definition and example,135
disjoint

cosets, 83

definition, 135
sets,26

distributivity, 21-22

definition, 136

intersection and union of sets, 26
domain

of a function, 51-53

of a relation, 41, 42,62
definition, 136

empty relation, 46

empty set, 9, 10

intersection of, 26

equivalence classes, 47-48, 63
definition, 136

equivalence relations, 46-47, 62-63
definition, 136

finite group, 74, 75
definition, 136

Lagrange's theorem, 86-87
functions, 50-51, 63

between groups, 101-6
classifying, 53-57

composition of, 57-60, 63

domain, codomain and range, 51-53

exercises, 61-62
mixed exam practice, 64-66

summary, 63

GaloisTheory, 95

generator element, cyclic groups, 76-78, 114
definition, 136

geometrical transformations, groups, 91-93
groups, 67

Abelian, 68

cancellation laws, 71-74

cyclic, 76-78, 111-12

definition, 136

four axioms of, 67-68, 93
geometrical transformations, 91-93

homomorphisms, 101-6
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isomorphisms, 109-11

kernels, 106-8

mixed exampractice,116-18
order of, 74-75

oforder6,91, 125-26

permutations, 94-100

structures, 67-70, 89-91

subgroups, 79-88

summary, 114-15

homomorphisms, 101-6, 115
definition, 136

exercises, 108-9

identity axiom, groups, 68, 69, 93

identity element, 16-17,33
cyclic groups, 76

definition, 136
kernel of a homomorphism, 107

subgroups, 80

identity functions, 59,63
identity permutation, 96

image of a binary relation, 41

indirect proof, 3

definition, 136

injectivity of functions, 53-54, 55-56,63

definition, 136

intersection of sets,25-27,33

definition, 136

De Morgans laws, 29

introductory problem, 1-2, 119-20
inverse elements, 17-19, 33

inverse functions, 56-57, 59-60, 63

definition, 136
inverse permutation, 96

inverses axiom, groups, 68, 81, 93

isomorphisms, 109-11,115
definition, 137

exercises, 112-14

kernels, homomorphism, 106-8,115
definition, 137

Klein 4-group, 91, 93, 114
definition, 137

Lagrange's theorem, 86-88, 114
definition, 137

Latin square, 72-73, 76
definition, 137

multiplicative identity, 18

number sets, 7-8

numerical congruence, 42

operations,12
associativity, 19-21

closure, 12-14

commutativity, 15
distributivity, 21-22

exercises, 23-25

identity element, 16-17
mixed exam practice, 35-36

on sets,25-32
summary, 33-34

operations on groups, 101-3
preservation of, 104-6, 112

operations on sets,25
DeMorgans laws, 29-31

exercises, 31-32

intersection, 25-27

set difference, 27-28

symmetricdifference, 28-29

union, 25

order of a group, 74-75

definition, 137

groups of orders1to 7, 89-91

order of a permutation, 97-98

ordered pairs, 37-40, 62
definition, 137

order of an element, 74-75
definition, 137

order relation, 47

partition of a set, 26, 34
definition, 137

by equivalence classes, 47-48
permutations, 94-95, 114-15

composition of, 95-96
decompositionof, 97-100

exercises, 100-1

identity and inverse, 96
powerofa set, 7, 137

prime order groups, 78, 114

proof by contradiction, 3-5
definition, 137

proof by induction, 3
definition and example, 138

proper
definition, 138

subgroups, 80-81

subsets, 9

range

of a function, 52-53
of a relation, 41, 62

definition, 138
reflective symmetry, 91-92

reflexive relations, 43-44, 62
relations, 40-41, 43, 62-63

definition, 138
domain and range, 41-42

empty, 46
equivalence,46-48
exercises,48-50
mixed exam practice, 64-66

reflexive, 43-44
symmetric, 44-45

transitive, 45-46

relative complement,27,28
rotational symmetry, 91-92

Russell's paradox, 8

scalar triple product, 22

self-inverse, 19, 33
definition, 139

permutations, 97-98

set difference, 27-28

definition, 139
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complementary, 9

enumerating, 7

exercises, 10-11
mixed exam practice, 35-36

notation for, 6-7

operations on, 25-32
standard number, 7-9

subsets, 9-10

summary, 33-34

size of a set, 7, 139
standard number sets, 7-8

subgroups, 79-81, 114
cosetsof, 81-84

definition, 139

exercises, 84-86
Lagrange's theorem, 86-88

subsets, 9-10

definition, 139

supersets, 9-10

definition, 139
surjectivity of functions, 54, 63

definition, 139

symmetric difference, sets, 28-29
definition, 139

symmetric relations, 44-45, 62
definition, 139

symmetry

definition, 139

geometrictransformations, 91-93
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A
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transformations, geometric, 91-93

transitive relations, 45-46, 62

definition, 139

transposition of elements, 97

definition, 139
trivial subgroups, 80

definition, 139

union of sets, 25, 33

definition, 139

De Morgans laws, 29
distributivity, 26

universal set, 8

absolute complementof, 9

definition, 140
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